...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Spin-Dependent Exciton Funneling to a Dendritic Fluorophore Mediated by a Thermally Activated Delayed Fluorescence Material as an Exciton-Harvesting Host
【24h】

Spin-Dependent Exciton Funneling to a Dendritic Fluorophore Mediated by a Thermally Activated Delayed Fluorescence Material as an Exciton-Harvesting Host

机译:将由热活化的延迟荧光材料介导的树突式荧光团作为激子收获宿主介导的旋转依赖性激子漏斗

获取原文
获取原文并翻译 | 示例
           

摘要

Thermally activated delayed fluorescence (TADF) materials generate energetically equivalent spin-singlet and spin-triplet excited states. In the presence of an energy acceptor, each excited state undergoes energy transfer on different length scales. However, the lack of quantitative understanding of the length dependence of the excited energy-transfer processes hampers the rational design of molecular systems that control exciton transport in organic light-emitting diodes (OLEDs) using TADF. We herein utilize a dendritic fluorophore G1, which consists of an anthracene-based fluorescent core encapsulated by four insulating tris(4-tert-butylphenyl)methyl groups as an energy acceptor. By combining transient photoluminescence measurements and kinetic modeling, we demonstrate the spin-dependent energy transfer in a binary host–guest system composed of a TADF material as the exciton-harvesting host and G1 as the guest fluorophore. The encapsulated structure with the dendritic shell effectively inhibits triplet excitons on the TADF host from funneling to the fluorescent core, thus allowing efficient reverse intersystem crossing and singlet energy transfer. The utilization of G1 in solution-processed OLEDs leads to a maximum external electroluminescence quantum efficiency as high as 5.2%, which is equivalent to an enhancement by a factor of 1.6 over the corresponding nondendritic fluorophore.
机译:热活化的延迟荧光(TADF)材料产生高端的旋转态突发和旋转三重态激发态。在能量受体存在下,每个激发态经历不同长度尺度的能量转移。然而,缺乏对激发能量转移过程的长度依赖性的定量理解,使用TADF阻碍了控制有机发光二极管(OLED)中激子输送的分子系统的合理设计。我们在本文中使用树突式荧光团G1,其由蒽基的荧光核心组成,其由四个绝缘三(4- Tert - 丁基苯基)甲基作为能量受体。通过组合瞬态光致发光测量和动力学建模,我们展示了由TADF材料组成的二进制宿主系统中的旋转依赖能量转移,作为Exciton收获主机和G1作为访客荧光团。具有树突壳的封装结构有效地抑制TADF主体上的三重态激子从漏斗到荧光核心,从而允许有效地逆向交叉系统交叉和单线电能转移。溶液加工OLED中的G1的利用导致最大的外部电致发光量子效率高达5.2%,这相当于相应的非牢荧光团的增强倍数1.6。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号