...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Alkyl Branching Position in Diketopyrrolopyrrole Polymers: Interplay between Fibrillar Morphology and Crystallinity and Their Effect on Photogeneration and Recombination in Bulk-Heterojunction Solar Cells
【24h】

Alkyl Branching Position in Diketopyrrolopyrrole Polymers: Interplay between Fibrillar Morphology and Crystallinity and Their Effect on Photogeneration and Recombination in Bulk-Heterojunction Solar Cells

机译:二酮吡咯醇聚合物中的烷基支化位置:纤维状形态和结晶度之间的相互作用及其对散装 - 异质结太阳能电池中的荧光和重组的影响

获取原文
获取原文并翻译 | 示例

摘要

Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency.
机译:基于二氧化丙吡咯醇(DPP)的供体受体共聚物已经获得了有机电子界的大量研究兴趣,因为它们在有机场效应晶体管(OFETS)中的高电荷载流量及其收获近红外(NIR)光子的能力在太阳能电池中。在该研究中,我们已经合成了基于四种基于DPP的供体 - 受体共聚物,其变化在供体单元和溶解的烷基链的分支点(在第二或第六碳位置)。放牧发射广角X射线散射(GIWAXS)结果表明,从聚合物主链进一步移动分支点增加了聚集的趋势,并产生具有更高程度的结晶度(DOC)的聚合物相。将聚合物与PC70BM混合并用作太阳能电池中的活性层。仔细分析纯聚合物和共混膜的能量揭示混合膜的电荷转移状态能量(E-CT)特别靠近供体(ED *)的单线电量,表明零电子转移附近损失。因此,光学间隙和开路电压(V-OC)之间的差异被确定为由于相当高的非极性418 +/- 13mV)和不可避免的辐射电压损耗(近似为255 +/- 8 mV)。即使四种材料具有相似的光学间隙,即使是最佳性能系统的短路电流密度(J(SC))覆盖从7到18 mA cm(-2)的大跨度。使用光致发光(PL)淬火和瞬态电荷提取技术,我们量化了Geminate和Nongeminate损失,并发现由于较大的总尺寸,更少的激子在聚合物中达到供体受体界面,其具有较大的分支点。在这些材料系统中,光源主要受激子收获效率的限制。

著录项

  • 来源
  • 作者单位

    Tech Univ Dresden Cfaed Helmholtzstr 18 D-01069 Dresden Germany;

    Tech Univ Dresden Cfaed Helmholtzstr 18 D-01069 Dresden Germany;

    Univ Potsdam Dept Phys &

    Astron Karl Liebknecht Str 24-25 D-14476 Potsdam Germany;

    Univ Potsdam Dept Phys &

    Astron Karl Liebknecht Str 24-25 D-14476 Potsdam Germany;

    Univ Potsdam Dept Phys &

    Astron Karl Liebknecht Str 24-25 D-14476 Potsdam Germany;

    Tech Univ Dresden Dresden Integrated Ctr Appl Phys &

    Photon Mat IAP Nothnitzer Str 61 D-01187 Dresden Germany;

    Tech Univ Dresden Dresden Integrated Ctr Appl Phys &

    Photon Mat IAP Nothnitzer Str 61 D-01187 Dresden Germany;

    Helmholtz Zentrum Dresden Rossendorf Inst Ion Beam Phys &

    Mat Res Bautzner Landstr 400 D-01328 Dresden Germany;

    Tech Univ Dresden Cfaed Helmholtzstr 18 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Hohe Str 6 D-01069 Dresden Germany;

    Tech Univ Dresden Cfaed Helmholtzstr 18 D-01069 Dresden Germany;

    Univ Potsdam Dept Phys &

    Astron Karl Liebknecht Str 24-25 D-14476 Potsdam Germany;

    Tech Univ Dresden Dresden Integrated Ctr Appl Phys &

    Photon Mat IAP Nothnitzer Str 61 D-01187 Dresden Germany;

    Tech Univ Dresden Cfaed Helmholtzstr 18 D-01069 Dresden Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号