...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Localized High Concentration Electrolytes for High Voltage Lithium-Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability
【24h】

Localized High Concentration Electrolytes for High Voltage Lithium-Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability

机译:用于高压锂金属电池的局部高浓度电解质:电解质组合物与其还原/氧化稳定性之间的相关性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We demonstrate a first-principles screening methodology as an effective tool to explore electrolyte formulations for the new generation of high energy density rechargeable batteries. We study the liquid structure and electronic properties in dilute electrolytes, high concentration electrolytes (HCE), and localized high concentration electrolytes (LHCE), with focus on electrolyte formulations based on lithium bis(fluorosulfonyl)imide (LiFSI), dimethyl carbonate (DMC), and bis(2,2,2-trifluoroethyl) ether (BTFE) as a diluent. We describe the solvation complexes in the dilute electrolyte and explore structural changes triggered by the increase in lithium salt concentration for HCEs and the diluent effects in LHCEs. In HCE formulations, there is a 4-fold coordination environment of lithium-ions as in the dilute electrolyte, but the number of lithium-ion interactions with 0 atoms from FSI- anions dominates. In these solutions, the ability of the FSI- anions to interact with multiple lithium-ions allows complex 3D network formation and influences the reductive/oxidative behavior of the electrolyte. Interestingly, in LHCEs, the BTFE diluent molecules do not change the 3D solution structure when diluting the HCE formulation from 5.49 to 3.83 M. However, there is a composition threshold where the structural and electronic behavior may change. We show that diluting the HCE electrolyte with BTFE down to 1.77 M breaks the three-dimensional solution structure into an island-like solvation complex. We relate these structural changes to the electronic properties of the electrolytes finding a causal relationship between the reductive/oxidative behavior and the lithium-oxygen interaction mechanisms in the solvated complexes. The coordination with lithium-ions lowers the electrolyte LUMO and HOMO levels: the higher is the number of interactions with lithium-ions, the more likely the solvent molecule, FSI- anion, or diluent molecule is to be reduced and the less likely it is to become oxidized. The evolution of the solvated ion structure in HCE and LHCE suggests a close connection to a corresponding change in the lithium-ion transport mechanisms for these electrolytes.
机译:我们展示了一种筛选方法作为探索新一代高能密度可充电电池的电解质配方的有效工具。我们研究稀释电解质,高浓度电解质(HCE)和局部高浓度电解质(LHCE)的液体结构和电子性质,重点是基于锂双(氟磺酰基)酰亚胺(LIFSI),二甲基酯(DMC)的电解质制剂,和双(2,2,2-三氟乙基)醚(BTFE)作为稀释剂。我们描述了稀释电解质中的溶剂化合物,并探讨了随着HCS锂盐浓度的增加和LHCE中的稀释剂效应引发的结构变化。在HCE制剂中,锂离子的4倍配位环境,如稀电解质中的锂离子,但与来自FSIIONs的0个原子的锂离子相互作用的数量占主导地位。在这些解决方案中,FSI - 阴离子与多个锂离子相互作用的能力允许复杂的3D网络形成并影响电解质的还原/氧化行为。有趣的是,在LHCS中,BTFE稀释剂分子在稀释5.49至3.83M至3.83米稀释HCE配方时,不改变3D溶液结构。然而,存在结构和电子行为可能改变的组成阈值。我们表明,用BTFE将HCE电解质稀释至1.77μm将三维溶液结构分成岛状溶剂化络合物。我们将这些结构变化与电解质的电子性质相关,找到了溶剂化络合物中的还原/氧化行为和锂 - 氧相互作用机制之间的因果关系。与锂离子的配位降低了电解质亮度和同性恋水平:与锂离子相互作用的相互作用越高,溶剂分子,FSI-或稀释剂分子的相互作用越多,它的可能性越小变得氧化。 HCE和LHCE中溶剂化离子结构的演变表明与这些电解质的锂离子传输机制的相应变化紧密连接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号