...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Zeolite Synthesis under Nonconventional Conditions: Reagents, Reactors, and Modi Operandi
【24h】

Zeolite Synthesis under Nonconventional Conditions: Reagents, Reactors, and Modi Operandi

机译:在非转化条件下的沸石合成:试剂,反应器和Modi手术

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A myriad of tetrahedral molecular sieve frameworks, often siliceous, can be calculated in silico. Only a tiny fraction (<0.1%) of these can be synthesized on purpose. Only a small fraction of these available frameworks, mostly those composed of only Si and Al as T atoms, i.e., true zeolites, are used commercially. A gap thus exists between what should be possible (thermodynamically) and what can be produced (kinetically) and used in real life. Even if a synthesis is successful (in industry or academia), flexibility with regard to synthesis parameters-in terms of time, amount of unit operations, OSDA efficiency, etc.-as well as the obtained material properties-in terms of Si/Al ratio, Al distribution, T atom variety, crystal size, etc.-remains limited. These limitations are not surprising, since conventional zeolite syntheses, i.e., hydrothermal synthesis in batch from amorphous or soluble Si and Al sources, have limited degrees of freedom (DOFs). Typically, the type of ingredients, their ratios, a constant temperature, the synthesis time, and the absence or presence of agitation are varied. In order to take new steps toward more cost-competitive syntheses, and more importantly zeolites with a greater flexibility in terms of structural properties, this Review highlights all DOFs that can be introduced in addition to or on top of the conventional way of synthesis. By doing this, a distinction is made between nonconventional DOFs that influence the chemistry of the system (e.g., interzeolite conversion, charge density mismatch, ionothermal or free-radical assisted synthesis) and nonconventional DOFs that influence the physical environment (e.g., ultrasounds, alternative energy via microwaves, or continuous setups). The Review concludes with learnings, practical insights, and future opportunities. In other words, which zeolite synthesis strategies really make a difference and which ones are just tweaking around the edges?
机译:一种无数的四面体分子筛框架,通常是硅质的,可以在硅中计算。只有微小的分数(<0.1%)可以故意合成。只有仅由Si和Al作为T原子组成的小部分,即真正的沸石仅在商业上使用。因此,应该在可能(热力学)之间存在间隙,并且可以生产(动力学)和现实生活中使用的间隙。即使合成成功(在工业或学术界),在时间,单位运算量,OSDA效率等方面的灵活性也是如此,以及所获得的材料属性 - 在Si / Al方面比率,Al分布,T原子品种,晶体尺寸等 - 仍然有限。这些限制并不令人惊讶,因为常规沸石合成,即分批的水热合成来自无定形或可溶性Si和Al源,具有有限的自由度(DOF)。通常,改变成分的类型,比例,恒温,合成时间和搅拌的不存在或存在。为了采取更多成本竞争性的合成,更重要的是在结构性特性方面具有更大灵活性的沸石,这一综述突出了除了传统的合成方式之外或顶部可以引入的所有DOF。通过这样做,在非转化的DOF之间进行区分,这些DOF在影响系统化学的(例如,透明石转化,电荷密度不匹配,离子或自由基辅助合成)和影响物理环境的非转化DOF(例如,超声波,替代方案通过微波炉或连续设置的能量)。审查总结了学习,实践见解和未来机会。换句话说,沸石综合策略真的有所作为,哪些刚刚在边缘围绕着?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号