首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Efficient Li-Metal Plating/Stripping in Carbonate Electrolytes Using a LiNO3-Gel Polymer Electrolyte, Monitored by Operando Neutron Depth Profiling
【24h】

Efficient Li-Metal Plating/Stripping in Carbonate Electrolytes Using a LiNO3-Gel Polymer Electrolyte, Monitored by Operando Neutron Depth Profiling

机译:使用LINO3-凝胶聚合物电解质的碳酸盐电解质中的高效锂金属电镀/剥离,由Operando中子深度分析监测

获取原文
获取原文并翻译 | 示例
           

摘要

The development of safe and high-performance Li-metal anodes is crucial to meet the demanded increase in energy density of batteries. However, severe reactivity of Li metal with typical electrolytes and dendrite formation leads to a poor cycle life and safety concerns. Therefore, it is essential to develop electrolytes that passivate the reactivity toward Li metal and suppress dendrite formation. Carbonate electrolytes display severe reactivity toward Li metal; however, they are preferred above the more volatile ether-based electrolytes. Here, a carbonate electrolyte gel polymer approach is combined with LiNO3 as an additive to stabilize Li-metal plating. This electrolyte design strategy is systematically monitored by operando neutron depth profiling (NDP) to follow the evolution of the plated Li-metal density and the inactive lithium in the solid electrolyte interface (SEI) during cycling. Individually, the application of the LiNO3 electrolyte additive and the gel polymer approach are shown to be effective. Moreover, when used in conjunction, the effects are complementary in increasing the plated Li density, reducing inactive Li species, and reducing the overpotentials. The LiNO3 additive leads to more compact plating; however, it results in a significant buildup of inactive Li species in a double-layer SEI structure, which challenges the cell performance over longer cycling. In contrast, the gel polymer strongly suppresses the buildup of inactive Li species by immobilizing the carbonate electrolyte species; however, the plating is less dense and occurs with a significant overpotential. Combining the LiNO3 additive with the gel polymer approach results in a thin and homogeneous SEI with a high conductivity through the presence of Li3N and a limited buildup of inactive Li species over cycling. Through this approach, even high plating capacities, reaching 7 mAh/cm(2), can be maintained at a high efficiency. The rational design strategy, empowered by monitoring the Li-density evolution, demonstrates the possibilities of achieving stable operation of Li metal in carbonate-based electrolytes.
机译:安全和高性能Li-Metal Anodes的开发至关重要,以满足电池的能量密度的要求增加。然而,Li金属具有典型电解质和树突式形成的严重反应性导致循环寿命和安全问题不佳。因此,必须开发钝化反应性的电解质并抑制树突形成。碳酸盐电解质对Li金属显示出严重的反应性;然而,它们优选高于更挥发的醚基电解质。这里,将碳酸盐电解质凝胶聚合物方法与LiNO 3合并为添加剂,以稳定Li-Metal电镀。通过Operando中子深度分析(NDP)系统地监测该电解质设计策略,以在循环期间沿着固体电解质界面(SEI)中的镀锌Li金浓度和无活性锂的演变。单独地,LiNO3电解质添加剂和凝胶聚合物方法的应用是有效的。此外,当结合使用时,效果在增加镀锌锂密度,减少无活性Li物种并减少过电位时是互补的。 LINO3添加剂导致更紧凑的电镀;然而,它导致双层SEI结构中的非活动LI物种积累,这挑战细胞性能超过较长的循环。相反,通过固定碳酸酯电解质物种,凝胶聚合物强烈抑制无活性Li物种的累积;然而,电镀较少并且随着显着的过电位而发生。将LINO3添加剂与凝胶聚合物方法相结合,通过存在Li3N的存在和在循环中的无活性Li物种的有限堆积的薄且均匀的SEI。通过这种方法,即使高电镀容量,达到7mAh / cm(2),也可以高效地保持。通过监测Li-Li-Li-Li-Li-Li-Limolution授权的理性设计策略表明了在碳酸盐基电解质中实现Li金属稳定运行的可能性。

著录项

  • 来源
  • 作者单位

    Delft Univ Technol Fac Sci Appl Sect Storage Electrochem Energy Radiat Sci &

    Tech NL-2629 JB Delft Netherlands;

    Nanjing Univ Collaborat Innovat Ctr Adv Microstruct Ctr Energy Storage Mat &

    Technol Coll Engn &

    Appl Sci Natl Lab Solid State Microst Nanjing 210093 Jiangsu Peoples R China;

    Delft Univ Technol Fac Sci Appl Sect Storage Electrochem Energy Radiat Sci &

    Tech NL-2629 JB Delft Netherlands;

    Delft Univ Technol Fac Sci Appl Sect Storage Electrochem Energy Radiat Sci &

    Tech NL-2629 JB Delft Netherlands;

    Delft Univ Technol Fac Sci Appl Sect Storage Electrochem Energy Radiat Sci &

    Tech NL-2629 JB Delft Netherlands;

    Delft Univ Technol Fac Sci Appl Sect Storage Electrochem Energy Radiat Sci &

    Tech NL-2629 JB Delft Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号