首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of LiNbO3 Surface Modification on the Electrochemical Performance
【24h】

Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of LiNbO3 Surface Modification on the Electrochemical Performance

机译:富含含量无序岩盐氧化物的氧气活性及LINBO3表面改性对电化学性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Li-rich disordered rock-salt oxides such as Li1.2Ni1/3Ti1/3Mo2/15O2 are receiving increasing attention as high-capacity cathodes due to their potential as high-energy materials with variable elemental composition. However, the first-cycle oxygen release lowers the cycling performance due to cation densification and structural reconstruction on the surface region. This work explores the influence of lithium excess on the charge compensation mechanism and the effect of surface modification with LiNbO3 on the cycling performance. Moving from a stoichiometric Li1.2Ni1/3Ti1/3Mo2/15O2 composition toward Li-rich Li1.2Ni1/3Ti1/3Mo2/15O2, oxygen redox is accompanied by oxygen release. Thereby, cationic charge compensation is governed by the Ni2+/3+ and Mo3+16+ redox reaction. Contrary to the bulk oxidation state of Mo6+ in the charged state, a mixed Mo valence on the surface is found by XPS. Furthermore, it is observed that smaller particle sizes result in higher specific capacities. Tailoring the surface properties of Li1.2Ni1/3Ti1/3Mo2/15O2 with a solid electrolyte layer of LiNbO3 altered the voltage profile, resulting in a higher average discharge voltage as compared to the unmodified material. The results hint at the interdiffusion of cations from the metal oxide surface coating into the electrode material, leading to bulk composition changes (doping) and a segregated Nb-rich surface. The main finding of this work is the enhanced cycling stability and lower impedance of the surface-modified compound. We argue that surface densification is mitigated by the Nb doping/surface modification.
机译:富含含量的无序岩盐氧化物,如Li1.2Ni1 / 3Ti1 / 3MO2 / 15O2由于其作为具有可变元素组成的高能量材料而导致的高容量阴极增加。然而,由于在表面区域上的阳离子致密化和结构重建,第一周期氧释放降低了循环性能。这项工作探讨了锂过量对电荷补偿机制的影响及对LINBO3对循环性能的表面改性的影响。从化学计量的Li1.2Ni1 / 3Ti1 / 3MO2 / 15O2组合物转向富含Li1.2NI1 / 3Ti1 / 3MO2 / 15O2,氧氧化还原伴有氧气释放。由此,阳离子电荷补偿由Ni2 + / 3 +和Mo3 + 16 +氧化还原反应控制。与带电状态下的MO6 +的散装氧化状态相反,XPS发现表面上的混合MO柔性。此外,观察到较小的粒度导致更高的特定能力。用LINBO3的固体电解质层剪裁Li1.2NI1 / 3Ti1 / 3MO2 / 15O2的表面性质改变了电压曲线,导致与未修饰的材料相比的平均放电电压较高。结果在将金属氧化物表面涂层涂覆到电极材料中的阳离子的相互扩散,导致块状组合物的变化(掺杂)和富偏析的Nb表面。这项工作的主要发现是增强的循环稳定性和表面改性化合物的较低阻抗。我们认为通过Nb掺杂/表面改性来减轻表面致密化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号