...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification
【24h】

Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification

机译:超薄二维共价有机框架纳米片中分子转子的限制进行传感信号放大

获取原文
获取原文并翻译 | 示例
           

摘要

Covalent organic frameworks (COFs) have emerged as promising crystalline porous materials with well-defined structures, high porosity, tunable topology, and functionalities suitable for various applications. However, studies of few-layered ultrathin two-dimensional (2D) COF nanosheets, which may lead to unprecedented properties and applications, are still limited. Herein, we report the targeted synthesis of three azine-linked and imine-linked 2D COFs named NUS 30-32 using monomers containing aggregation-induced emission (ME) rotor-active tetraphenylethylene (TPE) moieties, affording micro and meso-dual pores in NUS-30 and NUS-32 and triple pores in NUS-31. For the first time, we demonstrate that these isostructural bulk COF powders can be exfoliated into ultrathin 2D nanosheets (2-4 nm thickness) by a temperature-swing gas exfoliation approach. Compared with TPE monomers and COF model compounds, the AIE characteristic of NUS 30-32 nanosheets is distinctly suppressed because of the covalent restriction of the ME molecular rotors in the confined 2D frameworks. As a result, the enhancement of conjugated conformations of NUS 30-32 nanosheets with unusual structure relaxation shows signal amplification effect in biomolecular recognition of amino acids and small pharmaceutical molecules (L-dopa), exhibiting much higher sensitivity than their stacked bulk powders, TPE monomer, and COF model compound. Moreover, the binding affinity of the COF nanosheets toward amino acids can be controlled by increasing the number of azine moieties in the structure. Density functional theory calculations reveal that binding affinity control results from the crucial geometric roles and stronger host guest binding between azine moieties and amino acids. In addition, we demonstrate that minimal loading of the NUS-30 nanosheets in composite membranes can afford excellent performance for biomolecule detection. Our findings pave a way for the development of functional ultrathin 2D COF nanosheets with precise control over the nature, density, and arrangement of the binding active sites involved in enhanced molecule recognition.
机译:共价有机框架(COFs)已成为具有明确定义的结构,高孔隙率,可调谐拓扑和适用于各种应用的功能的晶体多孔材料。然而,对少数层超薄二维(2D)COF纳米片的研究仍然有限。在此,我们用含有聚集诱导的发射(ME)转子活性四苯基(TPE)部分的单体报告名为NUS 30-32的三种含有NUS 30-32的三个环链和亚胺连接的2D COF的靶向合成。 NUS-30和NUS-32和NUS-31的三孔隙。我们首次证明,通过温度 - 摆动气体剥离方法可以将这些甲基块COF粉末剥离成超薄2D纳米蛋白酶(2-4nm厚度)。与TPE单体和COF模型化合物相比,由于ME在狭窄的2D框架中的分子转子的共价限制,因此抑制了NUS 30-32纳芯的AIE特征。结果,增强NUS 30-32纳米片的共轭构象具有异常结构松弛,显示了氨基酸和小药物分子(L-DOPA)的生物分子识别中的信号放大效果,表现出比其堆叠的散装粉末TPE更高的敏感性单体和COF模型化合物。此外,COF纳米片朝向氨基酸的结合亲和力可以通过增加结构中的吖嗪部分的数量来控制。密度函数理论计算揭示了与吖嗪部分和氨基酸之间的关键几何角色和更强的宿主客人的结合亲和力控制结果。此外,我们证明了复合膜中Nus-30纳米片的最小负载能够为生物分子检测提供优异的性能。我们的研究结果为开发功能性超薄2D COOM纳米型纳米蛋白酶铺平了一种精确的控制性质,密度和涉及增强分子识别所涉及的结合活性位点的结构。

著录项

  • 来源
  • 作者单位

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

    Natl Univ Singapore Dept Mech Engn Singapore 117574 Singapore;

    Natl Univ Singapore Dept Mech Engn Singapore 117574 Singapore;

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

    Chinese Acad Sci Fujian Inst Res Struct Matter State Key Lab Struct Chem Fuzhou 350002 Fujian Peoples R China;

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

    Natl Univ Singapore Dept Mech Engn Singapore 117574 Singapore;

    Natl Univ Singapore Dept Chem &

    Biomol Engn 4 Engn Dr 4 Singapore 117585 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号