首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Chemical Stabilities of the Lowest Triplet State in Aryl Sulfones and Aryl Phosphine Oxides Relevant to OLED Applications
【24h】

Chemical Stabilities of the Lowest Triplet State in Aryl Sulfones and Aryl Phosphine Oxides Relevant to OLED Applications

机译:与OLED应用相关的芳基砜和芳基氧化膦中最低三重态的化学稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Aryl sulfones and phosphine oxides are widely used as molecular building blocks for host materials in the emissive layers of organic light-emitting diodes. In this context, the chemical stability of such molecules in the triplet state is of paramount concern to long-term device performance. Here, we explore the triplet excited-state (T-1) chemical stabilities of aryl sulfonyl and aryl phosphoryl molecules by means of UV absorption spectroscopy and density functional theory calculations. Both the sulfur-carbon bonds of the aryl sulfonyl molecules and the phosphorus-carbon bonds of aryl phosphoryl derivatives are significantly more vulnerable to dissociation in the T-1 state when compared to the ground (S-0) state. Although the vertical S-0 -> T-1 transitions correspond to nonbonding -> pi-orbital transitions, geometry relaxations in the T-1 state lead to sigma-sigma* character over the respective sulfur-carbon or phosphorus carbon bond, a result of significant electronic state mixing, which facilitates bond dissociation. Both the activation energy for bond dissociation and the bond dissociation energy in the T-1 state are found to vary linearly with the adiabatic T-1-state energy. Specifically, as T-1 becomes more energetically stable, the activation energy becomes larger, and dissociation becomes less likely, that is, more endothermic or less exothermic. While substitutions of electron-donating or -accepting units onto the aryl sulfones and aryl phosphine oxides have only marginal influence on the dissociation reactions, extension of the pi-conjugation of the aryl groups leads to a significant reduction in the triplet energy and a considerable enhancement in the Ty-state chemical stabilities.
机译:芳基砜和膦氧化物广泛用作用于有机发光二极管的发光层中的主体材料的分子构建块。在这种情况下,三重态状态下这些分子的化学稳定性对于长期设备性能至关重要。在此,我们通过UV吸收光谱和密度泛函理论计算探讨芳基磺酰基和芳基磷素分子的三联兴奋状态(T-1)化学稳定性。芳基磺酰基分子的硫 - 碳键和芳基磷素衍生物的磷 - 碳键键在与地面(S-0)状态相比时明显更容易在T-1状态下解离。虽然垂直的S-0 - > T-1转变对应于非粘附性 - > Pi-轨道转变,但T-1状态的几何松弛导致Sigma-Sigma *特征在相应的硫 - 碳或磷键上,结果重要的电子状态混合,便于粘合解离。发现粘合解离的活化能量和T-1状态中的粘合离解能都与绝热的T-1状态能量线性变化。具体地,随着T-1变得更加积极稳定,活化能量变大,并且解离变得不太可能,即更吸热或更低的放热。虽然将电子提供的或 - 接种单元取代在芳基砜和芳基氧化氨酰氧化物上仅对解离反应进行边际影响,但芳基的PI-缀合的延伸导致三重态能量显着降低和相当大的增强在Ty状态的化学稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号