...
首页> 外文期刊>Chemical Engineering Science >Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel: Effects of Brownian diffusion, shear rate and viscosity gradient
【24h】

Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel: Effects of Brownian diffusion, shear rate and viscosity gradient

机译:熵生成的数值研究预测微通道内纳米流体流量的不缩探:褐色扩散,剪切速率和粘度梯度的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Highlights ? Irreversibilities in nanofluid flow are evaluated considering particle migration. ? Effects of viscosity gradient, shear rate, and Brownian diffusion are considered. ? Brownian impact reduces at higher concentrations compared with other factors. ? Total entropy generation in the microchannel decreases by particles enlargement. ? An ANN model for entropy generation rates is developed using the numerical data. Abstract In the present contribution, irreversibilities caused by heat transfer and friction for the water-TiO2 nanofluid flow in a circular microchannel are investigated by evaluating entropy generation rates. The effects of viscosity gradient, non-uniform shear rate and Brownian diffusion on particle migration are taken into account in order to examine the effect of nanoparticle arrangement on entropy generation rates. The results show that nanoparticle migration alters concentration distribution and consequently, changes entropy generation rates. Nanoparticle migration increases concentration of the particles in central regions, and this migration is more noticeable for higher mean concentrations and larger particles. Thermal entropy generation rate intensifies with increasing wall heat flux and particle size while decreases with increasing concentration. Frictional entropy generation rate increases by concentration increment and decreases by particles enlargement, while it changes trivially by increasing wall heat flux. Frictional entropy generation rate is larger than thermal entropy generation rate in the microchannel under study and therefore, total entropy generation mostly stems from friction. Thus, total entropy generation rate decreases by particles enlargement, which is a positive result according to second law of thermodynamics. Eventually, a model for entropy generation rates is developed using the numerical data by means of Artificial Neural Network (ANN). ]]>
机译:<![cdata [ 亮点 考虑粒子迁移,评估纳米流体流的不缩探。 粘度梯度,剪切速率和考虑布朗扩散。 布朗冲击在更高的浓度下减少与其他因素更高的浓度。 Total Entropy Persati在微通道中通过粒子放大减少。 使用数值数据开发熵生成速率的ANN模型。 抽象 在当前贡献中,由传热引起的不缩义通过评估熵产生速率,研究了水 - TiO的摩擦 2 循环微通道中的纳米流体流动。考虑粘度梯度,非均匀剪切速率和褐色扩散对颗粒迁移的影响,以检查纳米粒子排列对熵产生速率的影响。结果表明,纳米粒子迁移改变浓度分布,从而改变熵产生速率。纳米粒子迁移增加中央区域中颗粒的浓度,并且这种迁移对于更高的平均浓度和较大的颗粒更明显。热熵产生速率随着壁热通量和粒度的增加而增强,同时随着浓度的增加而降低。摩擦熵产生速率通过浓度增量增加并且通过粒子扩大而减小,而通过增加壁热通量来改变。摩擦熵生成率大于研究中的微通道中的热熵生成率,因此,总熵产生主要源于摩擦。因此,通过粒子扩大的总熵产生率降低,这是根据热力学的第二律规律的阳性结果。最终,使用人工神经网络(ANN)使用数值数据开发熵产生速率的模型。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号