首页> 外文期刊>Chemical Engineering Science >Combining tomographic imaging and in silico computation for rapid effective PEMFC cathode transport characterization
【24h】

Combining tomographic imaging and in silico computation for rapid effective PEMFC cathode transport characterization

机译:组合断层摄影成像和硅计算,以快速有效PEMFC阴极传输表征

获取原文
获取原文并翻译 | 示例
           

摘要

An approach for determination of effective oxygen diffusivity within a polymer electrolyte membrane fuel cell cathode catalyst layer by combining tomography and geometric calculations is presented. Accurate determination of effective oxygen diffusivity is critical for modeling and characterization of cathode design architectures. In silico geometric characterization methods exploit the increasing availability, capability, and decreasing cost of tomographic imaging and high-performance computing. Geometric methods can be made simple and fast and could accelerate efforts to iteratively improve cathode design. The method described herein relied on mathematically exact and statistically significant definitions of geometric tortuosity and geometric constrictivity, in addition to porosity. To demonstrate generality and robustness, a correlation for obstruction factor underpinned by these parameters was statistically induced from hundreds of instantiations of stochastic cathode microstructures generated by a simulated annealing method and validated versus the obstruction factor of real cathode microstructures obtained separately by Star and Fuller in a previous publication and Ziegler et al. at the University of Freiburg. This work demonstrated the utility and viability of adopting a combined tomography/geomet ric-computational approach for determination of the effective diffusivity of reactant in the cathode catalyst layer and its underlying transport properties. This analysis was based on a conventional cathode microstructure with platinum catalyst, carbon black support, and perfluorosulfonic acid ionomer. However, the method could easily be extended to platinum group metal-free cathodes in which accurate characterization may be of even greater importance due to the thicker cathode layers required in these systems. This approach could be widely adopted and relied upon for characterization as the materials and processing conditions of cathode layers are iteratively tested
机译:提出了一种通过组合断层扫描和几何计算来测定聚合物电解质膜燃料电池阴极催化剂层中有效氧漫射率的方法。精确测定有效氧扩散性对于阴极设计架构的建模和表征至关重要。在硅几何表征方法中,利用越来越多的可用性,能力和降低断层摄像性和高性能计算的成本。几何方法可以简单快速,可以加速努力改善阴极设计。除了孔隙率之外,这里描述的方法依赖于几何曲折性和几何收缩的数学精确和统计上显着的定义。为了证明一般性和鲁棒性,由这些参数的障碍因子的相关性统计学诱导由模拟退火方法产生的随机阴极微结构的数百个实例化,并且通过星和富勒分开获得的实际阴极微结构的障碍因子。以前的出版物和Ziegler等。在弗赖堡大学。这项工作证明了采用组合断层扫描/几何rIC计算方法的实用性和可行性,用于测定阴极催化剂层中反应物的有效扩散性及其下面的运输性能。该分析基于具有铂催化剂,炭黑载体和全氟磺酸离聚物的常规阴极微结构。然而,该方法可以很容易地扩展到铂族基团的无金属阴极,其中由于这些系统中所需的较厚的阴极层,精确表征可能更加重要。这种方法可以广泛采用和依赖于表征,因为迭代地测试阴极层的材料和加工条件

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号