首页> 外文期刊>Chemical engineering journal >Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils
【24h】

Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils

机译:通过大气干燥功能纤维素气凝胶的构建化学交联溶剂型纤维素纳米纤维

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nanocellulose aerogels have been used as "green" components in thermal insulation, catalyst supports and environmental remediation due to their outstanding mechanical properties and tunable surface chemistry. However, the drying process, a critical aspect of the aerogel preparation, represents a bottle-neck in terms of processing time and energy consumption. Atmospheric drying would solve both of these issues, however, to achieve this it would be necessary to first examine the forces within the pore walls during the drying process. It was found that strengthening the pore network structure and decreasing the surface tension of the solvent were viable strategies for achieving atmospheric drying of nanocellulose aerogels. In this study, glycidoxypropyltrimethoxysilane (GPTMS) and branched polyethyleneimine (b-PEI) were used to improve the mechanical properties of the pore walls. After freezing and thawing, Soxhlet extraction was used to replace the water in the gel with acetone. This effectively decreased the capillary pressure within the pores due to its lower surface tension, thus cellulose aerogels were obtained after drying. As a result of this new process, atmospheric dried aerogels possess a much higher (4.3 times) specific surface area than freeze-dried cellulose aerogels while maintaining flexibility. More importantly, this atmospheric drying method could be used to construct functional cellulose aerogels, such as flame retardant cellulose aerogels. Furthermore, the present method has enormous potential to facilitate the mass production of functional cellulose aerogels.
机译:由于其出色的机械性能和可调谐表面化学,纳米纤维素气凝胶已被用作保温,催化剂载体和环境修复中的“绿色”组分。然而,干燥过程是气凝胶制剂的关键方面,代表了处理时间和能量消耗方面的瓶颈。大气干燥将解决这两种问题,然而,为了实现这一点,必须首先在干燥过程中先检查孔壁内的力。结果发现,加强孔网络结构和降低溶剂的表面张力是实现纳米纤维素气凝胶大气干燥的可行策略。在该研究中,使用醇氧基丙基三甲氧基硅烷(GPTMS)和支链聚乙烯(B-PEI)来改善孔壁的机械性能。冷冻和解冻后,使用Soxhlet萃取来用丙酮代替凝胶中的水。由于其较低的表面张力,这有效地降低了孔内的毛细管压力,从而在干燥后获得纤维素气凝胶。由于这种新方法,大气干燥气凝胶具有比冻干纤维素气凝胶更高的(4.3倍)的比表面积,同时保持柔韧性。更重要的是,这种大气干燥方法可用于构建功能纤维素气凝胶,例如阻燃纤维素气凝胶。此外,本方法具有促进功能性纤维素气凝胶的批量生产的巨大潜力。

著录项

  • 来源
    《Chemical engineering journal》 |2019年第2019期|共8页
  • 作者单位

    Donghua Univ Key Lab Sci &

    Technol Ecotext Minist Educ Coll Chem Chem Engn &

    Biotechnol Shanghai 201620 Peoples R China;

    Univ Waterloo Waterloo Inst Nanotechnol Dept Chem Engn 200 Univ Ave West Waterloo ON N2L 3G1 Canada;

    Donghua Univ Key Lab Sci &

    Technol Ecotext Minist Educ Coll Chem Chem Engn &

    Biotechnol Shanghai 201620 Peoples R China;

    Donghua Univ Key Lab Sci &

    Technol Ecotext Minist Educ Coll Chem Chem Engn &

    Biotechnol Shanghai 201620 Peoples R China;

    Univ Waterloo Waterloo Inst Nanotechnol Dept Chem Engn 200 Univ Ave West Waterloo ON N2L 3G1 Canada;

    Univ Zurich Dept Chem Winterthurerstr 190 CH-8057 Zurich Switzerland;

    Donghua Univ Key Lab Sci &

    Technol Ecotext Minist Educ Coll Chem Chem Engn &

    Biotechnol Shanghai 201620 Peoples R China;

    Donghua Univ Key Lab Sci &

    Technol Ecotext Minist Educ Coll Chem Chem Engn &

    Biotechnol Shanghai 201620 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Cellulose aerogel; Atmospheric drying; Cross-linking; Solvent exchange; Flame retardant;

    机译:纤维素气凝胶;大气干燥;交联;溶剂交换;阻燃剂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号