首页> 外文期刊>Chemical engineering journal >Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries
【24h】

Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries

机译:尖晶石LINI0.5MN1.5O4正极材料的表面硫化,用于增强锂离子电池的电化学性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Stable interfacial structure is crucial for achieving superior electrochemical performances of high-voltage cathode materials for lithium-ion batteries. Herein, surface-sulfidized LiNi0.5Mn1.5O4 cathode materials are synthesized through electrostatic interactions between positively-charged LiNi0.5Mn1.5O4 and negatively-charged sulphur ion. A significant improvement in the rate capability, cycling stability and thermal stability has been achieved in surface-sulfidized LiNi0.5Mn1.5O4 electrode. A discharge capacity of 93.4 mAh g(-1) can be still delivered at 2 C after 2500 cycles with a capacity retention of 74.9%, which is far beyond that of the pristine one (45.3% after 1800 cycles). 3D porous structure of sulfidized-layer helps to form a stable cathode electrolyte interphase (CEI) film on LiNi0.5Mn1.5O4 surface via accommodating interfacial strain between active materials and CEI film. Metal-sulfides on LiNi0.5Mn1.5O4 surface could facilitate electron transfer across the LiNi0.5Mn1.5O4/electrolyte interface, reduce charge transfer resistance and consequently enhance rate capability. The adsorption of SO42- on LiNi0.5Mn1.5O4 surface also helps to enhance LiNi0.5Mn1.5O4/electrolyte interfacial stability. Moreover, the reduced work function induced by surface-sulfidization is considered to suppress decomposition of the electrolyte, improve interfacial stability and improve cycling stability. In terms of the superior electrochemical performances, surface-sulfidized LiNi0.5Mn1.5O4 composites can be utilized as a promising cathode material for high-performance lithium ion batteries.
机译:稳定的界面结构对于实现锂离子电池的高压阴极材料的卓越电化学性能至关重要。这里,通过带正电荷的LiNi0.5mN1.5O4和带负电的硫离子之间的静电相互作用来合成表面硫化的LiNi0.5Mn1.5O4阴极材料。在表面硫化的LINI0.5MN1.5O4电极中实现了速率能力,循环稳定性和热稳定性的显着改善。在2500次循环后,放电容量为93.4mAhg(-1),仍然可以在25℃下递送74.9%,远远超出了原始一体(1800次循环后45.3%)。硫化层的3D多孔结构有助于在LiNi0.5Mn1.5O4表面上形成稳定的阴极电解质间(CEI)膜,通过适应活性材料和CEI膜之间的界面菌株。 LINI0.5MN1.5O4表面上的金属硫化物可以促进在LINI0.5MN1.5O4 /电解质界面上的电子转移,降低电荷传递电阻并因此提高速率能力。 SO42-在LINI0.5MN1.5O4表面上的吸附还有助于增强LINI0.5MN1.5O4 /电解质界面稳定性。此外,认为由表面硫化诱导的减少的工作功能被认为是抑制电解质的分解,改善界面稳定性,提高循环稳定性。就卓越的电化学性能而言,表面硫化的LINI0.5MN1.5O4复合材料可用作高性能锂离子电池的有希望的阴极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号