...
首页> 外文期刊>Chemical engineering journal >Characterization of adsorption isotherm and density profile in cylindrical nanopores: Modeling and measurement
【24h】

Characterization of adsorption isotherm and density profile in cylindrical nanopores: Modeling and measurement

机译:圆柱纳米孔吸附等温线和密度分布的表征:建模与测量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Gas adsorption behavior in shale kerogen may not be fully described using the Simplified Local-Density (SLD) model with a slit-shaped pore. In this study, an extension of the SLD model is proposed to characterize the adsorption isotherm and density profile in shale nanopores with a circular pore geometry. Such an extension enables the pore structure associated with the SLD model to be comparable with the cylindrical micro- and mesopores in shale kerogen. To examine the accuracy and reliability of the extended SLD model, adsorption isotherms and density profiles of methane and carbon dioxide in single-walled carbon nanotubes (SWCNTs) calculated by the extended SLD model were compared with the corresponding quantities determined via the grand canonical Monte Carlo (GCMC) simulations. In addition, the extended SLD model was used to evaluate the measured adsorption of methane on the Marcellus shale core sample to demonstrate its practicability. The results of this study indicate that the adsorption isotherm and density profile calculated by the extended SLD model are in reasonably good agreement with those determined via the GCMC simulation. Moreover, the extended SLD model can properly characterize the measured adsorption isotherm of methane on shale. These findings illustrate that the extended SLD model is a robust engineering model, which is capable of predicting the adsorption isotherm and density profile in cylindrical nanopores. More significantly, the extended SLD model serves as a link to convey the microscopic details from the GCMC simulations to the interpretation of experimental measurements through rapid computations.
机译:可以使用具有狭缝形孔的简化的局部密度(SLD)模型来充分描述页岩Kerogen中的气体吸附行为。在该研究中,提出了SLD模型的延伸,以表征具有圆孔几何形状的页岩纳米孔中的吸附等温线和密度分布。这样的延伸使得与SLD模型相关联的孔结构与Shale Kerogen中的圆柱形微孔和中孔相当。为了检查扩展SLD模型的准确性和可靠性,将通过扩展SLD模型计算的单壁碳纳米管(SWCNT)中的吸附等温线和甲烷和二氧化碳的密度分布与通过大规范蒙特卡罗确定的相应量测定(GCMC)模拟。此外,扩展SLD模型用于评估Marcellus页岩核心样品上测量的甲烷吸附,以证明其实用性。该研究的结果表明,通过扩展SLD模型计算的吸附等温线和密度分布与通过GCMC模拟确定的那些合理良好的吻合。此外,扩展的SLD模型可以正确地表征页岩上的测量吸附等温线。这些发现说明扩展的SLD模型是一种坚固的工程模型,其能够预测圆柱形纳米孔中的吸附等温线和密度分布。更重要的是,扩展SLD模型用作通过快速计算将显微镜细节从GCMC模拟传送到实验测量的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号