...
首页> 外文期刊>Chemical engineering journal >Molten salt 'boiling' synthesis of surface decorated bimetallic-nitrogen doped carbon hollow nanospheres: An oxygen reduction catalyst with dense active sites and high stability
【24h】

Molten salt 'boiling' synthesis of surface decorated bimetallic-nitrogen doped carbon hollow nanospheres: An oxygen reduction catalyst with dense active sites and high stability

机译:熔盐“沸腾”表面的表面装饰双金属 - 氮掺杂碳中空纳米球:氧还原催化剂,具有致密活性位点和高稳定性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Previous studies have shown that introducing of an extra transition metal into the monometallic-nitrogen doped carbon (mono-MNC) could benefit oxygen adsorption, further weaken the O-O bond energy, and thus promote the electrocatalytic performance for oxygen reduction reaction (ORR). Up to now, the bimetallic-nitrogen doped carbons (bi-MNC) were mostly prepared by direct pyrolysis of in-situ mixed precursors or pre-formed bimetal-organic frameworks (bi-MOFs), sub-micro sized products with encapsulated metal particles were commonly formed, leading to lower utilization of the metal atoms and less active sites density of the catalysts. In this paper, surface anchored iron-cobalt-nitrogen doped carbon (FeCoNC) hollow nanospheres were properly designed by "boiling" the monodispersed polypyrrole nanospheres in Fe, Co ions involved molten salt. Even a trace amount of Fe, Co atoms were anchored on the nitrogen doped carbon hollow nanospheres, the onset potential, half-wave potential and limiting current density could reach to 0.950 V, 0.841 V and 6.898 mA/cm(2) respectively at low mass loading of 0.2 mg/cm(2), demonstrating high utilization of the metal atoms and dense active sites of the catalyst. The Zn-air battery and direct ethanol fuel cell tests also revealed that the FeCoNC hollow nanospheres could present high stability in both non-oxidizing and oxidizing alkaline conditions. The surface decoration of bimetallic atoms on nitrogen doped carbon nanospheres through molten salt "boiling" method provides an effective way to prepare superior electrocatalysts for ORR.
机译:以前的研究表明,将额外的过渡金属引入单金属氮掺杂碳(单锰)可以有益于氧气吸附,进一步削弱O-O键能量,从而促进氧还原反应的电催化性能(ORR)。到目前为止,通过直接热解热的原位混合前体或预形成的双金属 - 有机框架(Bi-Mof),亚微米尺寸的产品,具有包封的金属颗粒的亚微米产品的直接热解制备双金属 - 氮掺杂碳(Bi-MnC)主要是制备的通常形成,导致催化剂的金属原子和较少的活性位点利用较低的催化剂。本文通过“沸腾”在Fe,Co离子中涉及熔盐的“沸腾”,通过“沸腾”锚固碳含量纳米球,将表面锚固铁 - 钴 - 氮掺杂碳(FECONC)中空纳米球进行适当设计。甚至痕量的Fe,CO原子锚定在氮掺杂的碳中空纳米球上,发病电位,半波电位和限制电流密度分别在低温下分别达到0.950V,0.841V和6.898mA / cm(2)大量负载量为0.2mg / cm(2),展示了金属原子的高利用率和催化剂的致密活性位点。 Zn-Abile电池和直接乙醇燃料电池试验还显示FECONC中空纳米球在非氧化和氧化碱性条件下可能具有高稳定性。通过熔盐“沸腾”方法氮掺杂碳纳米球的双金属原子的表面装饰提供了一种制备ORR的优质电催化剂的有效方法。

著录项

  • 来源
    《Chemical engineering journal》 |2020年第1期|共9页
  • 作者单位

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Energy Res Zhenjiang 212013 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Molten salt "boiling" method; Bimetallic decoration; FeCoNC hollow nanospheres; Oxygen reduction; Zn-air battery; Direct ethanol fuel cell;

    机译:熔盐“沸腾”方法;双金属装饰;Feconc中空纳米球;氧气减少;Zn-air电池;直接乙醇燃料电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号