首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution
【24h】

In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution

机译:原位生长含氮中的硫化钴中空纳米球,其含氮和硫磺共掺杂石墨烯纳米孔作为高活性电催化剂,用于氧还原和进化

获取原文
获取原文并翻译 | 示例
       

摘要

Developing high-performance bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) using nonprecious metal-based catalysts is a major challenge for achieving the commercial success of regenerative fuel cells and rechargeable metal-air batteries. In the present study, we designed a new type of bifunctional catalyst by embedding cobalt sulfide hollow nanospheres in nitrogen and sulfur co-doped graphene nanoholes (Co1-xS/N-S-G) via a simple, one-pot pyrolysis method. The catalyst had a high specific surface area (390.6 m(2) g(-1)) with a hierarchical meso-macroporous structure. In an alkaline medium, the catalyst exhibited high ORR catalytic activity, with a half-wave potential 30 mV more positive and a diffusion-limiting current density 15% higher than a commercial Pt/C catalyst, and the catalyst is also highly active for OER with a small overpotential of 371 mV for 10 mA cm(-2) current density. Its overall oxygen electrode activity parameter (Delta E) is 0.760 V, which is smaller than that of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, it demonstrated better durability towards both the ORR and OER. Detailed investigation clarified that the material's excellent electrocatalytic performance is attributable to: (1) a synergistic effect, induced by the presence of multiple types of active sites, including cobalt sulfide hollow nanospheres, nitrogen and sulfur dopants, and possible Co-N-C sites; (2) cobalt sulfide hollow nanospheres penetrating through the plane of graphene sheets form strong interaction between them; (3) more edge defects associated with the existence of nanoholes on the graphene basal plane; and (4) the high surface area and efficient mass transfer arising from the hierarchical porous structure.
机译:使用非普健金属基催化剂开发用于氧还原反应(ORR)和氧气进化反应(OER)的高性能双功能电催化剂是实现再生燃料电池和可充电金属空气电池的商业成功的主要挑战。在本研究中,我们通过简单的单盆热解法将硫化钴中空纳米孔(CO1-XS / N-S-G)嵌入氮气和硫化物中空纳米孔(CO1-XS / N-S-G)中的硫化物中空纳米球设计了一种新型的双官能催化剂。催化剂具有高比表面积(390.6m(2)g(-1)),具有分层中间型大孔结构。在碱性培养基中,催化剂表现出高ORR催化活性,半波电位30mV比商用PT / C催化剂更高的阳性和扩散限制的电流密度15%,并且催化剂对oer具有高度活性的具有371 mV的小型过电流,10 mA cm(-2)电流密度。其整体氧气电极活性参数(Delta E)为0.760V,比先前研究中的Pt / C和大多数非贵金属催化剂小于Pt / C和大多数非贵金属催化剂。此外,它对ORR和OER展示了更好的耐用性。详细的调查澄清了材料的优异电催化性能是可归因的:(1)通过多种类型的活性位点的存在诱导的协同效应,包括硫化钴中空纳米球,氮和硫掺杂剂,以及可能的Co-N-C位点; (2)硫化钴中空纳米球穿过石墨烯片的平面,在它们之间形成强烈的相互作用; (3)与石墨烯基面上的纳米孔存在的更多边缘缺陷; (4)高表面积和从等级多孔结构产生的高效传质。

著录项

  • 来源
  • 作者单位

    Dongguan Univ Technol Sch Environm &

    Civil Engn Dongguan 523808 Peoples R China;

    Dongguan Univ Technol Sch Environm &

    Civil Engn Dongguan 523808 Peoples R China;

    Dongguan Univ Technol Sch Environm &

    Civil Engn Dongguan 523808 Peoples R China;

    South China Univ Technol Sch Chem &

    Chem Engn Key Lab Fuel Cell Technol Guangdong Prov Guangzhou 510641 Guangdong Peoples R China;

    South China Univ Technol Sch Chem &

    Chem Engn Key Lab Fuel Cell Technol Guangdong Prov Guangzhou 510641 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-19 19:42:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号