首页> 外文期刊>Chemical engineering journal >Kinetic enhancement of capturing and storing greenhouse gas and volatile organic compound: Micro-mechanism and micro-structure of hydrate growth
【24h】

Kinetic enhancement of capturing and storing greenhouse gas and volatile organic compound: Micro-mechanism and micro-structure of hydrate growth

机译:捕获和储存温室气体和挥发性有机化合物的动力学增强:水合物生长的微机理和微观结构

获取原文
获取原文并翻译 | 示例
           

摘要

The use of hydrate-based technology for gas capture and storage is highly attractive for environmental mitigation, as it entails low energy penalties and provides gas storage density maximization and long-term storage stability. Although this method has been investigated in extensive researches, its development is restricted by the obscure underlying gas capture micro-mechanisms, elusive micro-structures of stored forms, and insufficient hydrate film growth rates. In this study, the Magnetic Resonance Imaging technique was employed to analyze the hydrate growth micro-processes for greenhouse gas (imitated by CO2, CH4, and various fractions of CO2-CH4 mixed gases) and volatile organic compound (simulated by C2H4 and C2H2 gases) capture and storage. The hydrate film growth was enhanced with the addition of 288 ppm sodium dodecyl sulfate (SDS), which significantly improved the hydrate growth in the cases of hydrocarbon gases, but not CO2 gas due to the competing adsorption of bicarbonate and dodecyl sulfate ions. With SDS, hydrocarbon gas hydrates grew via the patchy model at 65-105 mm/s, and 65-95% liquid water was converted into hydrates for gas capture and storage. However, only about 1.4% water was converted into CO2 hydrates with SDS, at 10.4 mm/s. Thus, a multi-pressure control mechanism for secondary hydrate growth was developed to promote CO2 capture and storage, based on a large amount of dissolved CO2 gas compared to the other investigated gases. The enhanced CO2 capture has important implications for the optimized harmful gas sequestration, due to preferentially patchy hydrate morphologies and associated impacts on permeability.
机译:利用水合物技术用于气体捕获和储存对环境缓解具有高度吸引力,因为它需要低能量惩罚并提供气体存储密度最大化和长期存储稳定性。虽然这种方法已经在广泛的研究中进行了调查,但其发展受到模糊的潜气捕获微机制,储存形式的难以捉摸的微结构,以及水合物膜生长率不足。在该研究中,使用磁共振成像技术来分析温室气体的水合物生长微工艺(通过CO 2,CH 4和CO 2 -CH4混合气体的各种部分)和挥发性有机化合物(通过C 2 H 4和C 2 H 2气体模拟)捕获和存储。加入288ppm十二烷基硫酸钠(SDS)加入水合物膜生长,该硫酸钠(SDS)显着提高了烃类气体情况下的水合物生长,但由于碳酸氢盐和十二烷基硫酸十二烷基离子的竞争吸附而不是CO 2气体。对于SDS,烃类气体水合物通过65-105mm / s的拼点模型生长,65-95%的液态水转化为水合物以进行气体捕获和储存。然而,仅将1.4%的水转化为10.4mm / s的CO 2水合物。因此,开发了用于次级水合物生长的多压力控制机制,以促进与其他研究的其他研究的大量溶解的二氧化碳气体促进CO 2捕获和储存。由于优先的水合物形态和对渗透性的相关影响,增强的CO2捕获具有对优化的有害空气螯合的重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号