...
首页> 外文期刊>Chemical engineering journal >Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors
【24h】

Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors

机译:板式MOSE2和SNO2纳米颗粒通过化学键合的稳定和高功率钠离子电容器的化学键合协同偶联

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid sodium ion capacitors (HSICs) can combine the merits of both high-energy density sodium ion batteries (SIBs) and high-power supercapacitors. Currently one of the main challenges in developing high-performance HSICs is the lack of suitable electrode material with superior Na-ion storage capability. In this work, a novel nanocomposite comprised of MoSe2 nanosheets decorated with SnO2 nanoparticles through interfacial Se-O bonding (denoted as O-MoSe2/SnO2) has been rationally synthesized and studied as an electrode for both SIBs and HSICs. The nanocomposite delivers an impressive Na-ion storage capacity of 249 mA h g(-1) even at a high current density of 10 A g(-1). Kinetics analyses using cyclic voltammetry technique reveal the Na+-ion storage in the nanocomposite is governed by a pseudocapacitive charge storage (accounting for similar to 88% at a scan rate of 1.0 mV s(-1)) with fast Na+ insertion/extraction kinetics. Density Functional Theory (DFT) calculations disclose that a charge accumulation occurs at the interface of O-MoSe2/SnO2 nanocomposite, which promotes rapid Na+-ion transport through the interface. Furthermore, a HSIC device is assembled using the O-MoSe2/SnO2 nanocomposite as anode and an activated carbon as cathode, demonstrating a high energy density of 70 Wh kg(-1) at a power-output of 62 W kg(-1) with an excellent cycling stability of high capacitance retention rate of 94% for 6000 cycles at 5 A g(-1).
机译:混合动力钠离子电容器(HSICS)可以结合高能密度钠离子电池(SIBS)和大功率超级电池的优点。目前,开发高性能HSIC的主要挑战之一是缺乏具有优异的Na离子储存能力的合适电极材料。在这项工作中,由通过界面SE-O键合的MOSE2纳米晶片组成的新型纳米复合材料(表示为O-MOSE2 / SNO2),已合理合成,并作为SIBs和HSIC的电极研究。纳米复合材料即使以10Ag(-1)的高电流密度,纳米复合材料也可令人印象深刻的Na离子储存容量为249mA Hg(-1)。使用循环伏安法技术进行动力学分析,揭示纳米复合材料中的Na +Ion储存由Pseudocapacitive电荷储存(算法以1.0mV S(-1)的扫描速率相似的88%),具有快速Na +插入/提取动力学。密度函数理论(DFT)计算公开了在O-MOSE2 / SNO2纳米复合材料的界面处发生电荷累积,其通过界面促进快速Na +Ion运输。此外,使用O-MOSE2 / SNO2纳米复合材料作为阳极和作为阴极的活性炭,在62W kg(-1)的动力输出处的高能量密度为70WH kg(-1)的高能密度具有优异的循环稳定性,高电容保持率为94%,6000次循环为5 A g(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号