...
首页> 外文期刊>CERAMICS INTERNATIONAL >SiC ceramics joined with an in-situ reaction gradient layer of TiC/Ti(3)SiC(2 )and interface stress distribution simulations
【24h】

SiC ceramics joined with an in-situ reaction gradient layer of TiC/Ti(3)SiC(2 )and interface stress distribution simulations

机译:SiC陶瓷与TiC / Ti(3)SiC(2)的原位反应梯度层和接口应力分布模拟

获取原文
获取原文并翻译 | 示例

摘要

A new multi-layered design of joining filler, consisting of a Ti3SiC2 layer and an in-situ reaction TiC transition layer, was proposed to join monolithic SiC. The robust TiC transition layer was formed in-situ by controlling the interface reaction and diffusion process between the deposited Ti layer and the SiC matrix. The joining process was evaluated by the analysis of the interface reaction, phase evolution, mechanical properties, and finite element analysis. The bending strength of the sample joined at 1500 degrees C was 155.8 +/- 23.1 MPa, which was similar to that of the reference unjoined SiC (155.1 +/- 35.6 MPa). The thermal residual stresses between SiC and Ti3SiC2 were released by the formation of gradient layer of TiC at the interface. When the optimized joining approach was used, a dense TiC transition layer was formed and all brittle Ti-Si intermetallic phases completely transformed to Ti3SiC2. Furthermore, the proposed multi-layer joining design shows its potential to be used for joining of SiC-based ceramic matrix composites.
机译:提出了一种新的多层设计,由Ti3 SiC2层和原位反应TiC转变层组成,加入单片SiC。通过控制沉积的Ti层和SiC基质之间的界面反应和扩散过程原位形成鲁棒的TiC转变层。通过分析界面反应,相位演化,机械性能和有限元分析来评估加入过程。在1500℃下加入的样品的弯曲强度为155.8 +/- 23.1MPa,其类似于参考未加工SiC(155.1 +/- 35.6MPa)的MPa。通过在界面处的梯度层形成SiC和Ti3SIC2之间的热残余应力。当使用优化的连接方法时,形成致密的TiC转变层,所有脆性Ti-Si金属间相完全转化为Ti3SIC2。此外,所提出的多层连接设计表明其用于连接基于SiC的陶瓷基质复合材料的可能性。

著录项

  • 来源
    《CERAMICS INTERNATIONAL 》 |2018年第13期| 共10页
  • 作者单位

    Chinese Acad Sci Engn Lab Nucl Energy Mat Ningbo Inst Mat Technol &

    Engn Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Engn Lab Nucl Energy Mat Ningbo Inst Mat Technol &

    Engn Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Engn Lab Nucl Energy Mat Ningbo Inst Mat Technol &

    Engn Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Engn Lab Nucl Energy Mat Ningbo Inst Mat Technol &

    Engn Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Engn Lab Nucl Energy Mat Ningbo Inst Mat Technol &

    Engn Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Engn Lab Nucl Energy Mat Ningbo Inst Mat Technol &

    Engn Ningbo 315201 Zhejiang Peoples R China;

    Fudan Univ Dept Aeronaut &

    Astronaut Inst Mech &

    Computat Engn Shanghai 200433 Peoples R China;

    Yeungnam Univ Sch Mat Sci &

    Engn Gyongsan South Korea;

    Chinese Acad Sci Engn Lab Nucl Energy Mat Ningbo Inst Mat Technol &

    Engn Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Engn Lab Nucl Energy Mat Ningbo Inst Mat Technol &

    Engn Ningbo 315201 Zhejiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 陶瓷工业 ; 硅酸盐工业 ;
  • 关键词

    SiC; Joining; MAX phases; Finite element analysis;

    机译:SIC;加入;最大阶段;有限元分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号