...
首页> 外文期刊>CERAMICS INTERNATIONAL >Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature
【24h】

Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature

机译:Si / Al摩尔比对Metakaolin Geo聚合物的强度耐久性和体积稳定性的影响升高温度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Good structural performance in a fire scenario necessitates that the structural material possesses chemical stability, deformation resistance and strength endurance. Excellent chemical stability for geopolymers has been reported in literature at a microscale. However, their performance at macroscale has not yet been systematically explored and the underlying mechanisms remain unexplained. In current study, effect of variation in Si/Al molar ratio on the meso- and macro-scale thermal stability of metakaolin geopolymers has been comprehensively investigated to discover the underlying mechanisms governing the performance. Results show that all the geopolymer samples experienced reduction in compressive strengths after exposure to high temperature up to 900 degrees C. Although, the geopolymer mixes exhibited good chemical stability at microscale, they possessed poor volume stability at mesoscale with very high thermal shrinkage. It was observed that thermal shrinkage induced crack formation dominates the residual strength for geopolymer mixes with Si/Al molar ratio = 1.50, while densification of matrix is the governing factor of the residual strength for geopolymer mixes with Si/Al molar ratio 1.50. Re-crystallization of nepheline at high temperature adversely affect the strength by inducing expansion and cracking of the geopolymer matrix. Geopolymer sample with Si/Al ratio 1.75 retained highest strength (6 MPa) because viscous sintering of geopolymer mixes with high Si/Al ratio at temperature beyond 600 degrees C enables localized healing of micro-cracks and densification of matrix which favored compressive strength gain after exposure to 900 degrees C. At an even higher Si/Al of 2.0, foaming of unreacted silica upon heating can lead to expansion and cracking of the sample which reduce the strength. It was observed that due to high degree of cracking damage and low residual strength retention, it is essential to improve the macro-scale stability of metakaolin geopolymers for structural fire resistance applications.
机译:火灾情景中的良好结构性能需要结构材料具有化学稳定性,变形抗性和强度耐久性。在微观尺寸的文献中据报道,在文献中据报道了优异的地质化学稳定性。但是,他们在宏观上的表现尚未得到系统探索,潜在的机制仍未解释。在目前的研究中,已全面研究了甲状腺素地质聚合物的中间和宏观稳定性的Si / Al摩尔比变化的影响,发现了治疗性能的潜在机制。结果表明,在暴露于高达900℃的高温后,所有地质聚合物样本都经历了抗压强度的降低。虽然地质聚合物混合物在微尺度下表现出良好的化学稳定性,但它们在Mesoscale具有非常高的热收缩的较差的体积稳定性。被观察到热收缩诱导的裂缝形成主导地质聚合物混合物与Si / Al摩尔比的残留强度均多,而基质的致密化是地质聚合物与Si / Al摩尔比和GT混合的残留强度的控制因子。 1.50。通过诱导地质聚合物基质的膨胀和破裂,在高温下重结晶尼触线在高温下对强度产生不利影响。具有Si / Al比为1.75保留最高强度(6MPa)的地缘聚合物样品,因为在超过600摄氏度的温度下具有高Si ​​/ Al比的地质聚合物混合物的粘性烧结使得微裂纹的局部愈合和基质的致密化有利于抗压强度增益暴露于900℃。在2.0的甚至更高的Si / Al下,未反应二氧化硅在加热时发泡可以导致样品的膨胀和破裂,这降低了强度。观察到,由于高裂缝损伤和低残留强度保留,因此必须提高结构耐火应用的甲状腺素地质聚合物的宏观规模稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号