首页> 外文期刊>CERAMICS INTERNATIONAL >FE coupled to SPH numerical model for the simulation of high-velocity impact on ceramic based ballistic shields
【24h】

FE coupled to SPH numerical model for the simulation of high-velocity impact on ceramic based ballistic shields

机译:FE耦合到SPH数值模型,用于模拟陶瓷弹道屏蔽的高速冲击

获取原文
获取原文并翻译 | 示例
           

摘要

Predictive models are an important tool in the design and optimization of ballistic shields. Indeed, several authors in the literature have developed numerical models for simulating high-velocity impact on ceramic-based ballistic shields which are based on the finite element method. Element erosion is usually implemented in finite element models simulating impact to remove excessively distorted elements but, it leads to energy loss, which in turns may lead to the production of incorrect results. Due to the absence of a fixed mesh, the smoothed particle hydrodynamics method is well suited for large deformation problems, overcoming the limitations of the finite element method. On the other hand, the smoothed particle hydrodynamics method is computationally more expensive than the finite element method. Thus, a numerical model combining the lower computational cost of finite elements and the capability of smoothed particle hydrodynamics of dealing with crack formation and fracturing would be an interesting solution for the simulation of high-velocity impact on ceramics. The aim of this work is therefore to develop a finite element coupled to smoothed particle hydrodynamics numerical model for the simulation of high-velocity impact on ceramic-based ballistic shields. High-velocity impact tests were performed on Al2O3 tiles and the experimental results were used for the calibration of the numerical models; furthermore, high-velocity impact test were performed on multilayer targets with Al2O3 front layer and AA6061T6 backing layer for the validation of the numerical models. This study proved that this approach is more appropriate for the simulation of the response of ceramic materials rather the common finite element model.
机译:预测模型是球屏蔽设计和优化的重要工具。实际上,文献中的一些作者开发了用于模拟基于陶瓷的弹道屏蔽的高速冲击的数值模型,这是基于有限元方法的基于陶瓷的弹道屏蔽。元素侵蚀通常在有限元模型中实现模拟冲击以消除过度失真的元件,但它导致能量损失,这又可能导致生产不正确的结果。由于不存在固定网格,平滑的粒子流体动力学方法非常适用于大变形问题,克服有限元方法的局限性。另一方面,平滑的粒子流体动力学方法比有限元方法计算得更昂贵。因此,组合有限元计算成本的数值模型及其处理裂缝形成和压裂的平滑粒子流体动力学的能力将是用于模拟对陶瓷的高速影响的有趣解决方案。因此,该工作的目的是开发一个有限的元件,其耦合到平滑的粒子流体动力学数值模型,用于模拟基于陶瓷的弹道屏蔽的高速撞击。对Al2O3瓷砖进行高速冲击试验,实验结果用于校准数值模型;此外,对具有Al2O3前层和AA6061T6背衬层的多层靶进行高速冲击试验,用于验证数值模型。本研究证明,这种方法更适合模拟陶瓷材料的响应而是共同的有限元模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号