首页> 外文期刊>CERAMICS INTERNATIONAL >Influence of ceramic substrate porosity and glass phase content on the microstructure and mechanical properties of metallized ceramics via an activated Mo-Mn method
【24h】

Influence of ceramic substrate porosity and glass phase content on the microstructure and mechanical properties of metallized ceramics via an activated Mo-Mn method

机译:陶瓷衬底孔隙率和玻璃相含量通过活性MO-Mn法对金属化陶瓷微观结构和力学性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

With the development of power electronics, metallizing of ceramics has been developed and employed in many industrial applications. This paper describes the effect of porosity, mean pore size and glass phase content of Al2O3 substrate on the microstructure evolution and mechanical properties of metallized ceramics obtained by an activated Mo-Mn method. The interface reaction as well as the joining strength between Al2O3 ceramic and Mo-Mn layer were investigated systematically using X-ray diffraction, SEM, energy dispersive X-ray analysis et al. The overall porosity affects the 'absorptivity' of the substrate towards the glass phase in the metallized layer, while the glass phase content affects the diffusion depth of the Mn-containing phase. The results show that the distribution of the Mn-containing glass phase in the alumina substrate determined the failure characteristics of specimens under bending and tension conditions. The mean pore size determines the magnitude of capillary force responsible for the diffusion of Mn-containing glass phase into the ceramic substrate. The thickness of the Mo-Mn layer reduced and the thickness of the transition region increased at high alumina porosity. This resulted in a decrease of tensile strength, and an increase of flexural strength growth rate GR for specimens after metallization. The tensile strength of metallized specimens monotonously increased with the glass phase content, while the flexural strength first increased and then decreased. A tensile strength of 1990 +/- 75 N, a flexural strength of 9499 +/- 346 N and a He leakage rate of 3.5 x 10(-11) Pa m 3 s(-1) were obtained in the optimized specimens after metallization.
机译:随着电力电子设备的发展,在许多工业应用中已经开发并采用了陶瓷的金属化。本文描述了Al2O3基材的孔隙率,平均孔径和玻璃相含量对通过活化的MO-Mn法获得的金属化陶瓷的微观结构演化和力学性能。使用X射线衍射,SEM,能量分散X射线分析等系统地研究了界面反应以及Al 2 O 3陶瓷和MO-MN层之间的连接强度。整体孔隙率影响基材的“吸收率”朝向金属化层中的玻璃相,而玻璃相含量影响含Mn相的扩散深度。结果表明,氧化铝基材中含Mn的玻璃相的分布确定了弯曲和张力条件下试样的失效特性。平均孔径决定了负责将含Mn的玻璃相扩散到陶瓷基底中的毛细管力的大小。 Mo-Mn层的厚度降低,过渡区域的厚度在高氧化铝孔隙中增加。这导致拉伸强度的降低,并在金属化后试样的弯曲强度生长速率Gr的增加。金属化试样的拉伸强度随玻璃相含量单调增加,而弯曲强度首先增加,然后降低。 1990 +/- 75 n的拉伸强度,在金属化后,在优化的标本中获得了3.5×10(-11)pa m 3 s(-1)的9499 +/- 346 n的弯曲强度和HE泄漏率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号