...
首页> 外文期刊>Biophysical Journal >Eliminating unwanted far-field excitation in objective-type TIRF. Part II. combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning.
【24h】

Eliminating unwanted far-field excitation in objective-type TIRF. Part II. combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning.

机译:消除客观型TIRF中的不需要的远场励磁。 第二部分。 结合的渐逝波激励和超临界角荧光检测改善了光学切片。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Azimuthal beam scanning makes evanescent-wave (EW) excitation isotropic, thereby producing total internal reflection fluorescence (TIRF) images that are evenly lit. However, beam spinning does not fundamentally address the problem of propagating excitation light that is contaminating objective-type TIRF. Far-field excitation depends more on the specific objective than on cell scattering. As a consequence, the excitation impurities in objective-type TIRF are only weakly affected by changes of azimuthal or polar beam angle. These are the main results of the first part of this study (Eliminating unwanted far-field excitation in objective-type TIRF. Pt.1. Identifying sources of nonevanescent excitation light). This second part focuses on exactly where up beam in the illumination system stray light is generated that gives rise to nonevanescent components in TIRF. Using dark-field imaging of scattered excitation light we pinpoint the objective, intermediate lenses and, particularly, the beam scanner as the major sources of stray excitation. We study how adhesion-molecule coating and astrocytes or BON cells grown on the coverslip surface modify the dark-field signal. On flat and weakly scattering cells, most background comes from stray reflections produced far from the sample plane, in the beam scanner and the objective lens. On thick, optically dense cells roughly half of the scatter is generated by the sample itself. We finally show that combining objective-type EW excitation with supercritical-angle fluorescence (SAF) detection efficiently rejects the fluorescence originating from deeper sample regions. We demonstrate that SAF improves the surface selectivity of TIRF, even at shallow penetration depths. The coplanar microscopy scheme presented here merges the benefits of beam spinning EW excitation and SAF detection and provides the conditions for quantitative wide-field imaging of fluorophore dynamics at or near the plasma membrane.
机译:方位角梁扫描使渐逝波(EW)激发各向同性,从而产生均匀点亮的总内部反射荧光(TIRF)图像。然而,光束旋转并没有从根本上阐述传播污染物镜型TIRF的激发光的问题。远场励磁在比细胞散射上的特定目标更多地取决于比。因此,客观型TiRF中的激发杂质仅受方位角或极梁角的变化弱影响。这些是本研究第一部分的主要结果(消除了客观型TIRF中的不需要的远场励磁。PT.1。识别不抗华激发光源的来源)。该第二部分恰好地专注于在照明系统杂散光中的升高的位置,这在TIRF中产生不变噪声组件。使用散射激发光的暗场成像,我们针对物镜,中间镜头,特别是光束扫描仪作为主要杂散激励的主要来源。我们研究了粘附分子涂层和星形胶质细胞的覆盖物涂层和扁平细胞如何在盖玻片表面上改变暗场信号。在平坦和弱散射的细胞上,大多数背景来自梁扫描仪和物镜中远离样品平面产生的杂散反射。在厚,光学致密的细胞大约一半的散射由样品本身产生。我们最终表明,与超临界角荧光(SAF)检测的物镜型EW激发有效地拒绝源自深层样品区域的荧光。我们证明,即使在浅穿透深度下,SAF也改善了TIRF的表面选择性。这里提出的共面显微镜的方案合并光束旋转EW激励和SAF检测的益处,并提供质量膜在等离子体膜或附近的荧光团动力学的定量宽场成像的条件。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号