首页> 美国卫生研究院文献>Biophysical Journal >Eliminating Unwanted Far-Field Excitation in Objective-Type TIRF. Part II. Combined Evanescent-Wave Excitation and Supercritical-Angle Fluorescence Detection Improves Optical Sectioning
【2h】

Eliminating Unwanted Far-Field Excitation in Objective-Type TIRF. Part II. Combined Evanescent-Wave Excitation and Supercritical-Angle Fluorescence Detection Improves Optical Sectioning

机译:在物镜类型TIRF中消除不需要的远场激励。第二部分van逝波激发与超临界角荧光检测相结合改善了光学切片

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Azimuthal beam scanning makes evanescent-wave (EW) excitation isotropic, thereby producing total internal reflection fluorescence (TIRF) images that are evenly lit. However, beam spinning does not fundamentally address the problem of propagating excitation light that is contaminating objective-type TIRF. Far-field excitation depends more on the specific objective than on cell scattering. As a consequence, the excitation impurities in objective-type TIRF are only weakly affected by changes of azimuthal or polar beam angle. These are the main results of the first part of this study (Eliminating unwanted far-field excitation in objective-type TIRF. Pt.1. Identifying sources of nonevanescent excitation light). This second part focuses on exactly where up beam in the illumination system stray light is generated that gives rise to nonevanescent components in TIRF. Using dark-field imaging of scattered excitation light we pinpoint the objective, intermediate lenses and, particularly, the beam scanner as the major sources of stray excitation. We study how adhesion-molecule coating and astrocytes or BON cells grown on the coverslip surface modify the dark-field signal. On flat and weakly scattering cells, most background comes from stray reflections produced far from the sample plane, in the beam scanner and the objective lens. On thick, optically dense cells roughly half of the scatter is generated by the sample itself. We finally show that combining objective-type EW excitation with supercritical-angle fluorescence (SAF) detection efficiently rejects the fluorescence originating from deeper sample regions. We demonstrate that SAF improves the surface selectivity of TIRF, even at shallow penetration depths. The coplanar microscopy scheme presented here merges the benefits of beam spinning EW excitation and SAF detection and provides the conditions for quantitative wide-field imaging of fluorophore dynamics at or near the plasma membrane.
机译:方位角光束扫描使e逝波(EW)激发各向同性,从而产生均匀照明的全内反射荧光(TIRF)图像。但是,光束旋转并不能从根本上解决传播污染物镜型TIRF的激发光的问题。远场激发更多地取决于特定目标而不是细胞散射。结果,物镜型TIRF中的激发杂质仅受到方位角或极光角的变化的微弱影响。这些是本研究第一部分的主要结果(消除物镜类型TIRF。Pt。1中的不希望有的远场激发)。第二部分重点关注照明系统中近光在哪里产生杂散光,这些杂散光会引起TIRF中的非零散分量。使用散射激发光的暗场成像,我们可以将物镜,中间透镜,特别是光束扫描仪确定为杂散激发的主要来源。我们研究了在盖玻片表面上生长的粘附分子涂层和星形胶质细胞或BON细胞如何改变暗场信号。在平坦且微弱散射的单元上,大多数背景来自在光束扫描仪和物镜中远离样品平面产生的杂散反射。在厚的光学密集型细胞上,大约一半的散射是由样品本身产生的。我们最终表明,将物镜类型的EW激发与超临界角荧光(SAF)检测结合起来可以有效地抑制源自较深样品区域的荧光。我们证明即使在较浅的穿透深度下,SAF仍可提高TIRF的表面选择性。本文介绍的共面显微镜方案融合了束流旋转电子束激发和SAF检测的优势,并为质膜处或附近的荧光团动力学定量广域成像提供了条件。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号