...
首页> 外文期刊>Biomaterials >A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions
【24h】

A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions

机译:胶质瘤干细胞的三维(3D)有机型微流体模型 - 血管相互作用

获取原文
获取原文并翻译 | 示例

摘要

Glioblastoma (GBM) is one of the deadliest forms of cancer. Despite many treatment options, prognosis of GBM remains dismal with a 5-year survival rate of 4.7%. Even then, tumors often recur after treatment. Tumor recurrence is hypothesized to be driven by glioma stem cell (GSC) populations which are highly tumorigenic, invasive, and resistant to several forms of therapy. GSCs are often concentrated around the tumor vasculature, referred to as the vascular niche, which are known to provide microenvironmental cues to maintain GSC sternness, promote invasion, and resistance to therapies. In this work, we developed a 3D organotypic microfluidic platform, integrated with hydrogel-based biomaterials, to mimic the GSC vascular niche and study the influence of endothelial cells (ECs) on patient-derived GSC behavior and identify signaling cues that mediate their invasion and phenotype. The established microvascular network enhanced GSC migration within a 3D hydrogel, promoted invasive morphology as well as maintained GSC proliferation rates and phenotype (Nestin, SOX2, CD44). Notably, we compared migration behavior to in vivo mice model and found similar invasive morphology suggesting that our microfluidic system could represent a physiologically relevant in vivo microenvironment. Moreover, we confirmed that CXCL12-CXCR4 signaling is involved in promoting GSC invasion in a 3D vascular microenvironment by utilizing a CXCR4 antagonist (AMD3100), while also demonstrating the effectiveness of the microfluidic as a drug screening assay. Our model presents a potential ex vivo platform for studying the interplay of GSCs with its surrounding microenvironment as well as development of future therapeutic strategies tailored toward disrupting key molecular pathways involved in GSC regulatory mechanisms. (C) 2018 Elsevier Ltd. All rights reserved.
机译:胶质母细胞瘤(GBM)是最致命的癌症形式之一。尽管有许多治疗方案,但GBM的预后仍然令人沮丧,5年生存率为4.7%。即使那么,肿瘤常常在治疗后发生重复。假设肿瘤复发是由胶质瘤干细胞(GSC)群体驱动,这些群是高度致瘤的,侵袭性和抗性多种形式的治疗。 GSCs通常集中在肿瘤脉管系统周围,称为血管核心,已知提供微环境提示,以维持GSC损伤,促进侵袭和对疗法的抵抗力。在这项工作中,我们开发了一种与水凝胶基生物材料集成的3D有机型微流体平台,以模仿GSC血管利基,并研究内皮细胞(ECS)对患者衍生的GSC行为的影响,并鉴定介导其入侵的信号线提示表型。建立的微血管网络增强了3D水凝胶内的GSC迁移,促进了侵入性形态以及维持的GSC增殖率和表型(Nestin,Sox2,CD44)。值得注意的是,我们将迁移行为与体内小鼠模型进行了比较,发现了类似的侵入性形态,表明我们的微流体系统可以代表体内微环境的生理相关。此外,我们通过利用CXCR4拮抗剂(AMD3100)证实CXCL12-CXCR4信号传导涉及促进3D血管微环境中的GSC侵袭,同时还证明了微流体作为药物筛选测定的有效性。我们的型号展示了潜在的前体内平台,用于研究GSC的相互作用与周围的微环境以及朝着扰乱GSC监管机制中涉及的关键分子途径量身定制的未来治疗策略的发展。 (c)2018年elestvier有限公司保留所有权利。

著录项

  • 来源
    《Biomaterials 》 |2019年第2019期| 共15页
  • 作者单位

    Arizona State Univ SBHSE Tempe AZ 85281 USA;

    St Josephs Hosp Barrow Neurol Inst Ivy Brain Tumor Ctr Div Neurobiol Phoenix AZ 85013 USA;

    Arizona State Univ SBHSE Tempe AZ 85281 USA;

    St Josephs Hosp Barrow Neurol Inst Ivy Brain Tumor Ctr Div Neurobiol Phoenix AZ 85013 USA;

    St Josephs Hosp Barrow Neurol Inst Ivy Brain Tumor Ctr Div Neurobiol Phoenix AZ 85013 USA;

    St Josephs Hosp Barrow Neurol Inst Ivy Brain Tumor Ctr Div Neurobiol Phoenix AZ 85013 USA;

    Arizona State Univ SBHSE Tempe AZ 85281 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号