...
首页> 外文期刊>Lab on a chip >A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix
【24h】

A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix

机译:一种新的微流体模型,允许在3D生物基质中监测复杂的血管结构和细胞相互作用

获取原文
获取原文并翻译 | 示例

摘要

Microfluidic organ-on-a-chip designs are used to mimic human tissues, including the vasculature. Here we present a novel microfluidic device that allows the interaction of endothelial cells (ECs) with pericytes and the extracellular matrix (ECM) in full bio-matrix encased 3D vessel structures (neovessels) that can be subjected to continuous, unidirectional flow and perfusion with circulating immune cells. We designed a polydimethylsiloxane (PDMS) device with a reservoir for a 3D fibrinogen gel with pericytes. Open channels were created for ECs to form a monolayer. Controlled, continuous, and unidirectional flow was introduced via a pump system while the design facilitated 3D confocal imaging. In this vessel-on-a-chip system, ECs interact with pericytes to create a human cell derived blood vessel which maintains a perfusable lumen for up to 7 days. Dextran diffusion verified endothelial barrier function while demonstrating the beneficial role of supporting pericytes. Increased permeability after thrombin stimulation showed the capacity of the neovessels to show natural vascular response. Perfusion of neovessels with circulating THP-1 cells demonstrated this system as a valuable platform for assessing interaction between the endothelium and immune cells in response to TNF alpha. In conclusion: we created a novel vascular microfluidic device that facilitates the fabrication of an array of parallel soft-channel structures in ECM gel that develop into biologically functional neovessels without hard-scaffold support. This model provides a unique tool to conduct live in vitro imaging of the human vasculature during perfusion with circulating cells to mimic (disease) environments in a highly systematic but freely configurable manner.
机译:微流体检查器的芯片设计用于模拟人体组织,包括脉管系统。在这里,我们提出了一种新型微流体装置,其允许内皮细胞(ECS)与周细胞和细胞外基质(ECM)的相互作用,所述全部生物基质中包装的3D容器结构(Neovessels)可以进行连续,单向流动和灌注循环免疫细胞。我们设计了一种具有储存器的聚二甲基硅氧烷(PDMS)装置,用于3D纤维蛋白原凝胶的储存器。为ECS创建开放渠道以形成单层。通过泵系统引入控制,连续和单向流动,而设计便利的3D共焦成像。在该血管上系统中,ECS与周内相互作用以产生人细胞衍生的血管,该血管保持绵绵中长达7天。葡聚糖扩散验证了内皮屏障功能,同时展示了支持周细胞的有益作用。凝血酶刺激后的渗透率提高显示奈多尔斯展示天然血管反应的能力。循环THP-1细胞灌注芽孢丝证明了该系统作为评估内皮细胞与TNFα之间的内皮细胞和免疫细胞之间相互作用的有价值平台。总之:我们创建了一种新型血管微流体装置,便于在ECM凝胶中制造一系列并联软通道结构,该阵列在没有硬质支架支撑的情况下开发成生物功能性奈良丝。该模型提供了一种独特的工具,可以在灌注过程中进行人体脉管系统的实际体外成像,以循环细胞以高系统但可自由的可配置方式模拟(疾病)环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号