...
首页> 外文期刊>Biomaterials >Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing
【24h】

Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing

机译:聚合物心脏瓣膜开发的机械考虑因素:生物力学,材料,设计和制造

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The native human heart valve leaflet contains a layered microstructure comprising a hierarchical arrangement of collagen, elastin, proteoglycans and various cell types. Here, we review the various experimental methods that have been employed to probe this intricate microstructure and which attempt to elucidate the mechanisms that govern the leaflet's mechanical properties. These methods include uniaxial, biaxial, and flexural tests, coupled with microstructural characterization techniques such as small angle X-ray scattering (SAXS), small angle light scattering (SALS), and polarized light microscopy. These experiments have revealed complex elastic and viscoelastic mechanisms that are highly directional and dependent upon loading conditions and biochemistry. Of all engineering materials, polymers and polymer-based composites are best able to mimic the tissue-level mechanical behavior of the native leaflet. This similarity to native tissue permits the fabrication of polymeric valves with physiological flow patterns, reducing the risk of thrombosis compared to mechanical valves and in some cases surpassing the in vivo durability of bioprosthetic valves. Earlier work on polymeric valves simply assumed the mechanical properties of the polymer material to be linear elastic, while more recent studies have considered the full hyperelastic stress-strain response. These material models have been incorporated into computational models for the optimization of valve geometry, with the goal of minimizing internal stresses and improving durability. The latter portion of this review recounts these developments in polymeric heart valves, with a focus on mechanical testing of polymers, valve geometry, and manufacturing methods.
机译:本地人心的心瓣叶含有层状微观结构,其包含胶原,弹性蛋白,蛋白多糖和各种细胞类型的层级排列。在这里,我们审查了已经用于探测这种复杂的微观结构的各种实验方法,并试图阐明控制传单的机械性能的机制。这些方法包括单轴,双轴和弯曲试验,与微观结构表征技术相结合,例如小角度X射线散射(SAX),小角度光散射(SAL)和偏振光显微镜。这些实验揭示了复杂的弹性和粘弹性机制,其具有高度定向和依赖于负载条件和生物化学。在所有工程材料中,聚合物和基于聚合物的复合材料最能模拟天然叶片的组织级机械行为。与本地组织的这种相似性允许使用生理流动模式制造聚合物阀,与机械阀相比,降低血栓形成的风险,并且在一些情况下超过生物假体瓣膜的体内耐久性。在聚合物阀上的早期工作简单地假设聚合物材料的机械性能为线性弹性,而最近的研究已经考虑了全塑性应力 - 应变反应。这些材料模型已被纳入计算模型中,用于优化阀门几何体,其目的是最小化内部应力和提高耐用性。本综述的后一部分叙述了聚合物心脏瓣膜的这些发展,重点是聚合物,阀门几何形状和制造方法的机械测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号