...
首页> 外文期刊>Biochemistry >Superrepression through Altered Corepressor–Activated Protein:Protein Interactions
【24h】

Superrepression through Altered Corepressor–Activated Protein:Protein Interactions

机译:通过改变的核心压缩机激活蛋白质的超压度:蛋白质相互作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Small molecules regulate transcription in both eukaryotes and prokaryotes by either enhancing or repressing assembly of transcription regulatory complexes. For allosteric transcription repressors, superrepressor mutants can exhibit increased sensitivity to small molecule corepressors. However, because many transcription regulatory complexes assemble in multiple steps, the superrepressor phenotype can reflect changes in any or all of the individual assembly steps. Escherichia coli biotin operon repression complex assembly, which responds to input biotin concentration, occurs via three coupled equilibria, including corepressor binding, holorepressor dimerization, and binding of the dimer to DNA. A genetic screen has yielded superrepressor mutants that repress biotin operon transcription in vivo at biotin concentrations much lower than those required by the wild type repressor. In this work, isothermal titration calorimetry and sedimentation measurements were used to determine the superrepressor biotin binding and homodimerization properties. The results indicate that, although all variants exhibit biotin binding affinities similar to that measured for BirA~(wt), five of the six superrepressors show altered homodimerization energetics. Molecular dynamics simulations suggest that the altered dimerization results from perturbation of an electrostatic network that contributes to allosteric activation of BirA for dimerization. Modeling of the multistep repression complex assembly for these proteins reveals that the altered sensitivity of the transcription response to biotin concentration is readily explained solely by the altered superrepressor homodimerization energetics. These results highlight how coupled equilibria enable alterations in a transcription regulatory response to input signal through an indirect mechanism.
机译:小分子通过增强或抑制转录调节络合物组装来调节真核生物和原核生物中的转录。对于变构转录阻遏物,超级压缩机突变体可以表现出对小分子核心压抑的敏感性增加。然而,由于许多转录调节络合物在多个步骤中组装,所以超级压缩机表型可以反映任何或所有单个装配步骤的变化。估计大肠杆菌生物素操纵官能抑制复杂组件,其响应输入生物素浓度,通过三个偶联平衡,包括铁芯粘合剂,给料二聚化和二聚体与DNA的结合。遗传筛网产生了超级压缩突变体,其在生物素浓度下抑制体内生物素操纵子转录,远低于野生型阻遏物所需的生物素浓度。在这项工作中,使用等温滴定热量和沉降测量来确定超级压缩体生物素结合和同源化性质。结果表明,尽管所有变体表现出类似于对Bira〜(WT)测量的生物素结合亲和力,但六个超级压缩机中的五种均表现出均二聚体能量。分子动力学模拟表明,静电网络的扰动改变的二聚化结果是有助于Bira的变构激活进行二聚化。这些蛋白质的MultiSep镇压复杂组件的建模表明,随着改变的超级压缩机同源化能量,容易解释转录对生物素浓度的转录响应的改变敏感性。这些结果突出了耦合均衡如何通过间接机制对输入信号进行转录调节响应的改变。

著录项

  • 来源
    《Biochemistry》 |2018年第7期|共11页
  • 作者单位

    Department of Chemistry &

    Biochemistry and Fischell Department of Bioengineering University of Maryland College Park Maryland 20742 United States;

    Department of Chemistry &

    Biochemistry and Fischell Department of Bioengineering University of Maryland College Park Maryland 20742 United States;

    Department of Chemistry &

    Biochemistry and Fischell Department of Bioengineering University of Maryland College Park Maryland 20742 United States;

    Department of Chemistry &

    Biochemistry and Fischell Department of Bioengineering University of Maryland College Park Maryland 20742 United States;

    Department of Chemistry &

    Biochemistry and Fischell Department of Bioengineering University of Maryland College Park Maryland 20742 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号