...
首页> 外文期刊>Biochemistry >X-rays in the Cryo-Electron Microscopy Era: Structural Biology’s Dynamic Future
【24h】

X-rays in the Cryo-Electron Microscopy Era: Structural Biology’s Dynamic Future

机译:冷冻电子显微镜时代的X射线:结构生物学的动态未来

获取原文
获取原文并翻译 | 示例

摘要

Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa) while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kilodaltons in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions at the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology.
机译:在过去的几年中,单粒子冷冻电子显微镜(Cryo-EM)作为阐明近原子分辨率的主要结构,甚至是X射线晶体学的既定技术,甚至是X射线晶体学的鉴定方法。 Cryo-EM现在能够探测蛋白质,如血红蛋白(64kDa)一样小,同时完全避免结晶瓶颈。 Cryo-EM的显着成功旨在质疑X射线方法,特别是晶体学的持续相关性。要说结构生物学的未来是低温或晶体学,但是,将被误导。结晶术保持更适合于在尺寸的几百千达尔顿下产生大分子的精确原子坐标,而探测较大的能力,潜在更无序的组件是Cryo-EM的明显优势。同样地,晶体学更好地提供高分辨率动态信息作为时间,温度,压力和其他扰动的函数,而Cryo-Em提供越来越洞察的构象和能量景观,特别是作为去卷积构象异质性的算法变得更加先进。最终,这两种技术的未来取决于他们的各个优势如何利用在结构生物学的前沿解决问题。结构确定只是一个更大的难题:现代结构生物学的中央挑战是将结构信息与生物学功能相关联。在这种观点中,我们从场上的几个领导者中分享了洞察力,并检查了X射线方法和Cryo-EM可以塑造结构生物学的未来的独特和互补方式。

著录项

  • 来源
    《Biochemistry》 |2018年第3期|共9页
  • 作者单位

    Program in Applied and Computational Mathematics and Department of Chemistry Princeton University Princeton New Jersey 08544 United States;

    Program in Applied and Computational Mathematics and Department of Chemistry Princeton University Princeton New Jersey 08544 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号