首页> 外文期刊>Biochemistry >Enhancement of RNA/Ligand Association Kinetics via an Electrostatic Anchor
【24h】

Enhancement of RNA/Ligand Association Kinetics via an Electrostatic Anchor

机译:通过静电锚改增RNA /配体关联动力学

获取原文
获取原文并翻译 | 示例
       

摘要

The diverse biological processes mediated by RNA rest upon its recognition of various ligands, including small molecules and nucleic acids. Nevertheless, a recent literature survey suggests that RNA molecular recognition of these ligands is slow, with association rate constants orders of magnitude below the diffusional limit. Thus, we were prompted to consider strategies for increasing RNA association kinetics. Proteins can accelerate ligand association via electrostatic forces, and here, using the Tetrahymena group I ribozyme, we provide evidence that electrostatic forces can accelerate RNA/ligand association. This RNA enzyme (E) catalyzes cleavage of an oligonucleotide substrate (5) by an exogenous guanosine (G) cofactor. The G 2'- and 3'-OH groups interact with an active site metal ion, termed M-C, within E.S.G, and we perturbed each of these contacts via -NH3+ substitution. New and prior data indicate that G(2'NH3+) and G(3'NH3+) bind as strongly as G, suggesting that the -NH3+ substituents of these analogues avoid repulsive interactions with M-C and make alternative interactions. Unexpectedly, removal of the adjacent -OH via -H substitution to give G(2'H,3'NH3+) and G(2'NH3+,3'H) enhanced binding, in stark contrast to the deleterious effect of these substitutions on G binding. Pulse-chase experiments indicate that the -NH3+ moiety of G(2'H,3'NH3+) increases the rate of G association. These results suggest that the positively charged -NH3+ group can act as a molecular "anchor" to increase the residence time of the encounter complex and thereby enhance productive binding. Electrostatic anchors may provide a broadly applicable strategy for the development of fast binding RNA ligands and RNA targeted therapeutics.
机译:RNA介导的各种生物过程依赖于其对各种配体的识别,包括小分子和核酸。然而,最近的文献调查表明,这些配体的RNA分子识别缓慢,结合率常数低于扩散极限的数量级。因此,提示我们考虑增加RNA协会动力学的策略。蛋白质可以通过静电力加速配体关联,并且在这里使用Tetrahymena Group I核酶,我们提供了静电力可以加速RNA /配体协会的证据。该RNA酶(E)通过外源性鸟苷(G)辅因子催化寡核苷酸基底(5)的切割。 G 2'-和3'-OH基团与活性位点金属离子相互作用,将M-C称为M-C,并且我们通过-NH3 +取代扰乱了这些接触中的每一个。新的和现有数据表明G(2'NH3 +)和G(3'NH3 +)与G一样紧密,表明这些类似物的-NH3 +取代基避免了与M-C的排斥相互作用并进行替代相互作用。出乎意料地,除去相邻的-OH替代物,得到G(2'H,3'NH3 +)和G(2'NH3 +,3'H)增强结合,与这些取代对G的有害效果相比捆绑。脉冲序列实验表明 - NH3 +部分G(2'H,3'NH3 +)增加了G关联的速率。这些结果表明,带正电荷的-NH3 +基团可以用作分子“锚”以增加遭遇复合物的停留时间,从而提高生产结合。静电锚可以为快速结合RNA配体和RNA靶向治疗提供广泛适用的策略。

著录项

  • 来源
    《Biochemistry》 |2019年第24期|共9页
  • 作者单位

    Stanford Univ Dept Biochem Stanford CA 94305 USA;

    Stanford Univ Dept Biochem Stanford CA 94305 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

  • 入库时间 2022-08-20 15:54:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号