首页> 外文期刊>Amino acids >New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine
【24h】

New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine

机译:纳米神经保护,纳米神经药理学和纳米神经毒性的新观点:氨基酸神经递质的调节作用,压力,创伤和纳米医学中的合并症因素

获取原文
获取原文并翻译 | 示例
           

摘要

Recent advancement in nanomedicine suggests that nanodrug delivery using nanoformulation of drugs or use of nanoparticles for neurodiagnostic and/or neurother-apeutic purposes results in superior effects than the conventional drugs or parent compounds. This indicates a bright future for nanomedicine in treating neurological diseases in clinics. However, the effects of nanoparticles per se in inducing neurotoxicology by altering amino acid neurotransmitters, if any, are still being largely ignored. The main aim of nanomedicine is to enhance the drug availability within the central nervous system (CNS) for greater therapeutic successes. However, once the drug together with nanoparticles enters into the CNS compartments, the fate of nanomaterial within the brain microen-vironment is largely remained unknown. Thus, to achieve greater success in nanomedicine, our knowledge in understanding nanoneurotoxicology in detail is utmost important. In addition, how co-morbidity factors associated with neurological disease, e.g., stress, trauma, hypertension or diabetes, may influence the neurotherapeutic potentials of nanomedicine are also necessary to explore the details. Recent research in our laboratory demonstrated that engineered nanoparticles from metals or titanium nanowires used for nanodrug delivery in laboratory animals markedly influenced the CNS functions and alter amino acid neurotransmitters in healthy animals. These adverse reactions of nanoparticles within the CNS are further aggravated in animals with different co-morbidity factors viz., stress, diabetes, trauma or hypertension. This effect, however, depends on the composition and dose of the nanomaterials used. On the other hand, nanodrug delivery by TiO2 nanowires enhanced the neurotherapeutic potential of the parent compounds in CNS injuries in healthy animals and do not alter amino acids balance. However, in animals with any of the above co-morbidity factors, high dose of nanodrug delivery is needed to achieve some neuroprotection. Taken together, it appears that while exploring new nanodrug formulations for neurotherapeutic purposes, co-morbidly factors and composition of nanoparticles require more attention. Furthermore, neurotoxicity caused by nanoparticles per se following nanodrug delivery may be examined in greater detail with special regards to changes in amino acid balance in the CNS.
机译:纳米医学的最新进展表明,使用药物的纳米制剂或将纳米颗粒用于神经诊断和/或神经治疗的目的而进行的纳米药物递送比常规药物或母体化合物产生更好的效果。这表明纳米药物在临床上治疗神经系统疾病的前景光明。然而,纳米粒子本身通过改变氨基酸神经递质(如果有的话)在诱导神经毒理学中的作用仍被很大程度上忽略。纳米医学的主要目的是增强中枢神经系统(CNS)内的药物利用率,从而获得更大的治疗成功。但是,一旦药物与纳米粒子一起进入CNS隔室,大脑微环境中纳米材料的命运很大程度上仍然未知。因此,为了在纳米医学上取得更大的成功,我们在详细了解纳米神经毒理学方面的知识至关重要。另外,与神经系统疾病相关的合并症因素,例如压力,创伤,高血压或糖尿病,如何影响纳米药物的神经治疗潜力,也是探索细节的必要条件。我们实验室的最新研究表明,用于实验动物纳米药物递送的金属或钛纳米线制成的工程纳米颗粒显着影响了健康动物的中枢神经系统功能并改变了氨基酸神经递质。具有不同合并症因素(例如压力,糖尿病,创伤或高血压)的动物会进一步加剧中枢神经系统内纳米颗粒的这些不良反应。然而,这种效果取决于所使用的纳米材料的组成和剂量。另一方面,通过TiO2纳米线的纳米药物递送增强了健康动物中枢神经系统损伤中母体化合物的神经治疗潜力,并且不会改变氨基酸的平衡。然而,在具有以上任何一种合并症因素的动物中,需要高剂量的纳米药物递送以实现某些神经保护作用。两者合计,似乎在探索用于神经治疗目的的新型纳米药物制剂时,并存病态因素和纳米颗粒的组成需要更多关注。此外,可以特别关注中枢神经系统中氨基酸平衡的变化,更详细地检查由纳米颗粒递送后的纳米颗粒本身引起的神经毒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号