...
首页> 外文期刊>ACS catalysis >RuPd Alloy Nanoparticles Supported on N-Doped Carbon as an Efficient and Stable Catalyst for Benzoic Acid Hydrogenation
【24h】

RuPd Alloy Nanoparticles Supported on N-Doped Carbon as an Efficient and Stable Catalyst for Benzoic Acid Hydrogenation

机译:N掺杂碳负载的RuPd合金纳米颗粒是高效稳定的苯甲酸加氢催化剂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

RuPd alloy nanopartides (3.6 nm) uniformly dispersed on N-doped carbon (RuPd/CN) was prepared via a simple ultrasound-assisted coreduction method. The RuPd/CN is highly active, selective, and stable in the hydrogenation of benzoic acid to cyclohexanecarboxylic acid under mild conditions with a TOF up to 2066 h(-1). It was found that the bimetallic RuPd/CN catalyst exhibited a substantially enhanced activity in comparison with the monometallic catalysts (Ru/CN and Pd/CN). The reason for the higher performance of the RuPd/CN catalyst is considered to be the increased Ru-0/Run+ ratio induced by the electronic interaction between Ru and Pd, as evidenced by various characterizations. Notably, the different phenomenon of activity platform on different catalysts ascribed to the effect of hydrogen pressure was newly observed and further explained by first-principle studies. Moreover, the factors influencing the adsorption modes of BA, especially the configuration of the carboxyl group, have been investigated preliminarily in first-principle studies, giving a distinct insight from the former work. The reason the carboxyl group in benzoic acid does not undergo hydrogenation, which results in superior selectivity (>99%), is also revealed by a comparison of the thermodynamics of hydrogenation and dissociation of the carboxyl group.
机译:通过简单的超声辅助磁化方法制备了均匀分散在N掺杂碳(RuPd / CN)上的RuPd合金纳米粒子(3.6 nm)。 RuPd / CN在温和条件下,TOF高达2066 h(-1)时,在苯甲酸加氢成环己烷羧酸中具有很高的活性,选择性和稳定性。发现与单金属催化剂(Ru / CN和Pd / CN)相比,双金属RuPd / CN催化剂显示出显着增强的活性。 RuPd / CN催化剂性能更高的原因被认为是由于Ru和Pd之间的电子相互作用引起的Ru-0 / Run +比值的增加,这已通过各种表征得到了证明。值得注意的是,新观察到活性平台在不同催化剂上的不同现象归因于氢气压力的影响,并且通过第一性原理研究得到了进一步解释。此外,在第一性原理研究中已初步研究了影响BA吸附模式的因素,尤其是羧基的构型,与以前的工作有着截然不同的见解。通过比较羧基的氢化和解离的热力学,也揭示了苯甲酸中的羧基不进行氢化而导致较高的选择性(> 99%)的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号