...
首页> 外文期刊>American Journal of Physiology >Real-time three-dimensional imaging of lipid signal transduction: apical membrane insertion of epithelial Na(+) channels.
【24h】

Real-time three-dimensional imaging of lipid signal transduction: apical membrane insertion of epithelial Na(+) channels.

机译:脂质信号传导的实时三维成像:上皮Na(+)通道的根尖膜插入。

获取原文
获取原文并翻译 | 示例

摘要

In the distal tubule, Na(+) resorption is mediated by epithelial Na(+) channels (ENaC). Hormones such as aldosterone, vasopressin, and insulin modulate ENaC membrane targeting, assembly, and/or kinetic activity, thereby regulating salt and water homeostasis. Insulin binds to a receptor on the basal membrane to initiate a signal transduction cascade that rapidly results in an increase in apical membrane ENaC. Current models of this signaling pathway envision diffusion of signaling intermediates from the basal to the apical membrane. This necessitates diffusion of several high-molecular-weight signaling elements across a three-dimensional space. Transduction of the insulin signal involves the phosphoinositide pathway, but how and where this lipid-based signaling pathway controls ENaC activity is not known. We used tagged channels, biosensor lipid probes, and intravital imaging to investigate the role of lipids in insulin-stimulated Na(+) flux. Insulin-stimulated delivery of intracellular ENaC to apical membranes was concurrent with plasma membrane-limited changes in lipid composition. Notably, in response to insulin, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) formed in the basolateral membrane, rapidly diffused within the bilayer, and crossed the tight junction to enter the apical membrane. This novel signaling pathway takes advantage of the fact that the lipids of the plasma membrane's inner leaflet are not constrained by the tight junction. Therefore, diffusion of PIP(3) as a signal transduction intermediate occurs within a planar surface, thus facilitating swift responses and confining and controlling the signaling pathway.
机译:在远端小管中,Na(+)吸收是由上皮Na(+)通道(ENaC)介导的。诸如醛固酮,加压素和胰岛素之类的激素可调节ENaC膜的靶向,组装和/或动力学活性,从而调节盐和水的体内稳态。胰岛素与基底膜上的受体结合,启动信号转导级联反应,从而迅速导致顶膜ENaC升高。该信号传导途径的当前模型设想了信号传导中间体从基底膜向顶膜的扩散。这需要在三维空间中扩散几个高分子量信号元件。胰岛素信号的转导涉及磷酸肌醇途径,但是基于脂质的信号传导途径如何以及在何处控制ENaC活性尚不清楚。我们使用标记的通道,生物传感器脂质探针和活体成像来研究脂质在胰岛素刺激的Na(+)通量中的作用。胰岛素刺激的细胞内ENaC传递到顶膜与脂质成分的质膜限制变化同时发生。值得注意的是,响应胰岛素,磷脂酰肌醇3,4,5-三磷酸(PIP(3))在基底外侧膜中形成,在双层内迅速扩散,并穿过紧密连接处进入顶膜。这种新颖的信号传导途径利用了以下事实:质膜内部小叶的脂质不受紧密连接的约束。因此,PIP(3)作为信号转导中间产物的扩散发生在平面内,从而有助于快速响应并限制和控制信号传导途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号