...
首页> 外文期刊>American Journal of Physiology >Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions.
【24h】

Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions.

机译:等距,空载和生理负载条件下大鼠心肌细胞的单细胞力学。

获取原文
获取原文并翻译 | 示例

摘要

One of the most salient characteristics of the heart is its ability to adjust work output to external load. To examine whether a single cardiomyocyte preparation retains this property, we measured the contractile function of a single rat cardiomyocyte under a wide range of loading conditions using a force-length measurement system implemented with adaptive control. A pair of carbon fibers was used to clamp the cardiomyocyte, attached to each end under a microscope. One fiber was stiff, serving as a mechanical anchor, while the bending motion of the compliant fiber was monitored for force-length measurement. Furthermore, by controlling the position of the compliant fiber using a piezoelectric translator based on adaptive control, we could change load dynamically during contractions. Under unloaded conditions, maximal shortening velocity was 106 +/- 8.9 microm/s (n = 13 cells), and, under isometric conditions, peak developed force reached 5,720 nN (41.6 +/- 5.6 mN/mm(2); n = 17 cells). When we simulated physiological working conditions consisting of an isometric contraction, followed by shortening and relaxation, the average work output was 828 +/- 123 J/m(3) (n = 20 cells). The top left corners of tension-length loops obtained under all of these conditions approximate a line, analogous to the end-systolic pressure-volume relation of the ventricle. All of the functional characteristics described were analogous to those established by studies using papillary muscle or trabeculae preparations. In conclusion, the present results confirmed the fact that each myocyte forms the functional basis for ventricular function and that single cell mechanics can be a link between subcellular events and ventricular mechanics.
机译:心脏最显着的特征之一是其能够将工作输出调整为外部负荷的能力。为了检查单个心肌细胞制剂是否保留此特性,我们使用自适应控制实现的力长测量系统在宽负荷条件下测量了单个大鼠心肌细胞的收缩功能。在显微镜下,用一对碳纤维夹住心肌细胞。一根纤维很硬,可以用作机械锚,同时监测顺应性纤维的弯曲运动以进行力长测量。此外,通过使用基于自适应控制的压电转换器控制顺应性光纤的位置,我们可以在收缩过程中动态改变负载。在空载条件下,最大缩短速度为106 +/- 8.9 microm / s(n = 13个单元),在等轴测条件下,峰值发展力达到5,720 nN(41.6 +/- 5.6 mN / mm(2); n = 17个单元格)。当我们模拟由等距收缩组成的生理工作条件,然后缩短和放松时,平均工作输出为828 +/- 123 J / m(3)(n = 20个细胞)。在所有这些条件下获得的张力长度环的左上角近似一条线,类似于心室的收缩末期压力-容积关系。所描述的所有功能特征均类似于通过使用乳头肌或小梁制剂进行研究而建立的功能特征。总之,本结果证实了以下事实:每个心肌细胞均构成心室功能的功能基础,并且单细胞机制可能是亚细胞事件与心室机制之间的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号