首页> 外文期刊>ACS applied materials & interfaces >Strain and Interface Effects in a Novel Bismuth-Based Self-Assembled Supercell Structure
【24h】

Strain and Interface Effects in a Novel Bismuth-Based Self-Assembled Supercell Structure

机译:新型基于铋的自组装超级电池结构中的应变和界面效应

获取原文
获取原文并翻译 | 示例
       

摘要

Bi2FeMnO6 (BFMO) thin films with both conventional pseudocubic structure and novel supercell structure have been grown on SrTiO3 (001) substrates with different thicknesses of CeO2 buffer layers (ranging from 6.7 to 50.0 nm) using pulsed laser deposition. The correlation between the thickness of the CeO2 buffer layer and the structure of the BFMO films shows that the CeO2 buffer layer, as thin as 6.7 nm, is sufficient in triggering the novel BFMO supercell structure. This may be ascribed to the interfacial strain between the BFMO supercell structure and the CeO2 buffer layer which also serves as a seed layer. The buffer layer thickness is found to be critical to control the microstructure and magnetism of the formed BFMO supercell structures. Thin seed layers can produce a smoother interface between the BFMO film and the CeO2 buffer layer, and therefore better ferrimagnetic properties. Our results have demonstrated that strain and interface could be utilized to generate novel thin film structures and to tune the functionalities of thin films.
机译:使用脉冲激光沉积技术,在具有不同厚度的CeO2缓冲层(范围为6.7至50.0 nm)的SrTiO3(001)衬底上,生长了具有常规伪立方结构和新型超晶格结构的Bi2FeMnO6(BFMO)薄膜。 CeO2缓冲层的厚度与BFMO膜的结构之间的相关性表明,只有6.7 nm的CeO2缓冲层足以触发新颖的BFMO超级电池结构。这可能归因于BFMO超级电池结构与CeO2缓冲层(也用作种子层)之间的界面应变。发现缓冲层的厚度对于控制所形成的BFMO超级电池结构的微观结构和磁性至关重要。薄的种子层可以在BFMO膜和CeO2缓冲层之间产生更平滑的界面,因此具有更好的亚铁磁性能。我们的结果表明,应变和界面可用于生成新颖的薄膜结构并调整薄膜的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号