首页> 外文期刊>ACS applied materials & interfaces >Quantum Chemical Design of Doped Ca2MnAlO5+delta as Oxygen Storage Media
【24h】

Quantum Chemical Design of Doped Ca2MnAlO5+delta as Oxygen Storage Media

机译:掺杂Ca2MnAlO5 +δ作为储氧介质的量子化学设计

获取原文
获取原文并翻译 | 示例
       

摘要

Browninillerite Ca2MnAlO5 has an exceptional capability to robustly adsorb half-molecules of oxygen and form Ca2MnAlO5.5. To utilize this unique property to regulate oxygen-involved reactions, it is crucial to match the oxygen release intake equilibrium with targeted reaction conditions. Here we perform a comprehensive investigation of the strategy of tuning the oxygen storage property of Ca2MnAlO5 through chemical doping. For undoped Ca2MnAlO5.5, Our first-principles calculation predicts that the equilibrium temperature at a pressure of 1 atm of O-2 is 848 K, which is in excellent agreement with experimental results. Furthermore, the doping of alkaline earth ions at the Ca site, trivalent ions at the Al site, and 3d transition Metal ions at the Mn site is analyzed: By the doping of 12.5% of Ga, V, and Ti, the equilibrium temperature shifts to high values by approximately 110-270 K, while by the doping of 12.5% of Fe, Sr, and Ba, the equilibrium temperature is lowered by approxitnately 20-210 K. The doping of these elements is thermodynamically stable, and doping other elements including Mg, Sc, Y, Cr, Co, and Ni generates metastable compounds. The doping of a higher content of Fe, however, lowers the oxygen storage capacity. Finally, on the basis of our calculated data, we prove that the formation energetics of nondilute interacting oxygen vacancy in doped Ca2MnAlO5.5 scale linearly with a simple descriptor, the oxygen p-band position relative to the Fermi level. The higher-oxygen p-band position leads to a lower vacancy formation energy and thus a lower oxygen release temperature. Understanding such a relationship between fundamental quantum chemical properties and macroscopic properties paves the road to the design and optimization of novel functional oxides.
机译:褐变钙石Ca2MnAlO5具有出色的能力,可以牢固地吸附半分子氧并形成Ca2MnAlO5.5。为了利用这种独特的性质来调节与氧气有关的反应,将氧气释放的进气平衡与目标反应条件相匹配至关重要。在这里,我们对通过化学掺杂调节Ca2MnAlO5的储氧性能的策略进行了全面的研究。对于未掺杂的Ca2MnAlO5.5,我们的第一性原理计算表明,在1个大气压的O-2压力下,平衡温度为848 K,这与实验结果非常吻合。此外,分析了Ca位置的碱土离子,Al位置的三价离子和Mn位置的3d过渡金属离子的掺杂:通过掺杂12.5%的Ga,V和Ti,平衡温度发生了变化。大约110-270 K达到较高的值,而掺杂12.5%的Fe,Sr和Ba会使平衡温度降低大约20-210K。这些元素的掺杂在热力学上是稳定的,并且掺杂其他元素包括Mg,Sc,Y,Cr,Co和Ni会生成亚稳态化合物。然而,较高含量的Fe的掺杂降低了储氧能力。最后,基于我们的计算数据,我们证明了掺杂的Ca2MnAlO5.5中非稀释的相互作用氧空位的形成能级具有简单的线性描述,即相对于费米能级的氧p带位置。较高的氧p带位置导致较低的空位形成能,因此较低的氧释放温度。了解基本量子化学性质与宏观性质之间的这种关系为新型功能性氧化物的设计和优化铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号