首页> 外文期刊>ACS applied materials & interfaces >An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye-Sensitized Solar Cells
【24h】

An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye-Sensitized Solar Cells

机译:染料空化在氢化TiO2纳米晶体中对染料敏化太阳能电池性能的作用的见解

获取原文
获取原文并翻译 | 示例
       

摘要

Hydrogenated titanium dioxide (H-TiO2) nanocrystals were successfully prepared via annealing TiO2 in H-2/N-2 mixed gas flow at elevated temperatures ranging from 300 to 600 degrees C. Electron paramagnetic resonance (EPR) spectra were used to determine the produced oxygen vacancy in H-TiO2. Variations in temperature were studied to investigate the concentration change of oxygen vacancy in H-TiO2. The H-TiO2 nanocrystals prepared at different temperatures were employed into photoanodes sensitized by N719 dye and found to have exceptional effect on the solar-to-electric energy conversion efficiency (eta). Photoanodes with H-TiO2 nanocrystals hydrogenated at 300 degrees C show the highest short-circuit current density (J(sc)) of 18.92 mA cm(2) and photoelectrical conversion efficiency of 7.76% under standard AM 1.5 global solar irradiation, indicating a 27 and 28% enhancement in J(sc) and eta, respectively, in comparison to those with TiO2. The enhancement is attributed to high donor density, narrow band gap and positive shift of flat band energy (V-fb) of H-TiO2 that promote the driving force for electron injection. Intensity-modulated photocurrent spectroscopy (IMPS) accompanied by intensity-modulated photovoltage spectroscopy (IMVS) and other analyses were applied to shed more light on the fundamental mechanisms inside the charge transfer and transport in these systems.
机译:通过在300至600摄氏度的高温下在H-2 / N-2混合气流中对TiO2进行退火,成功制备了氢化二氧化钛(H-TiO2)纳米晶体。使用电子顺磁共振(EPR)光谱确定生成的H-TiO2中的氧空位。研究了温度变化以研究H-TiO2中氧空位的浓度变化。将在不同温度下制备的H-TiO2纳米晶体用于N719染料敏化的光阳极中,发现它们对太阳能到电能的转换效率(eta)具有特殊的影响。具有在300摄氏度下氢化的H-TiO2纳米晶体的光阳极在标准AM 1.5全球太阳辐射下显示出最高的短路电流密度(J(sc))为18.92 mA cm(2),光电转换效率为7.76%。与TiO2相比,J(sc)和eta分别提高了28%和28%。增强归因于高施主密度,窄带隙和H-TiO2的平带能量(V-fb)的正向移动,这促进了电子注入的驱动力。强度调制的光电流能谱(IMPS)以及强度调制的光电压能谱(IMVS)和其他分析方法被用于阐明这些系统中电荷转移和传输的基本机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号