首页> 外文期刊>ACS applied materials & interfaces >Core-Shell Tin Oxide, Indium Oxide, and Indium Tin Oxide Nanoparticles on Silicon with Tunable Dispersion: Electrochemical and Structural Characteristics as a Hybrid Li-Ion Battery Anode
【24h】

Core-Shell Tin Oxide, Indium Oxide, and Indium Tin Oxide Nanoparticles on Silicon with Tunable Dispersion: Electrochemical and Structural Characteristics as a Hybrid Li-Ion Battery Anode

机译:具有可调分散性的硅上的核-壳氧化锡,氧化铟和氧化铟锡纳米颗粒:混合锂离子电池阳极的电化学和结构特征

获取原文
获取原文并翻译 | 示例
       

摘要

Tin oxide (SnO2) is considered a very promising material as a high capacity Li-ion battery anode. Its adoption depends on a solid understanding of factors that affect electrochemical behavior and performance such as size and composition. We demonstrate here, that defined dispersions and structures can improve our understanding of Li-ion battery anode material architecture on alloying and co-intercalation processes of Lithium with Sn from SnO2 on Si. Two different types of well-defined hierarchical Sn@SnO2 core-shell nanoparticle (NP) dispersions were prepared by molecular beam epitaxy (MBE) on silicon, composed of either amorphous or polycrystalline SnO2 shells. In2O3 and Sn doped In2O3 (ITO) NP dispersions are also demonstrated from MBE NP growth. Lithium alloying with the reduced form of the NPs and co-insertion into the silicon substrate showed reversible charge storage. Through correlation of electrochemical and structural characteristics of the anodes, we detail the link between the composition, areal and volumetric densities, and the effect of electrochemical alloying of Lithium with Sn@SnO2 and related NPs on their structure and, importantly, their dispersion on the electrode. The dispersion also dictates the degree of co-insertion into the Si current collector, which can act as a buffer. The compositional and structural engineering of SnO2 and related materials using highly defined MBE growth as model system allows a detailed examination of the influence of material dispersion or nanoarchitecture on the electrochemical performance of active electrodes and materials.
机译:氧化锡(SnO2)被认为是非常有前途的材料,可作为高容量锂离子电池阳极。它的采用取决于对影响电化学行为和性能(例如尺寸和组成)的因素的扎实理解。我们在这里证明,确定的分散体和结构可以改善我们对锂与锡从SnO2到Sn的合金化和共嵌入过程的理解,从而更好地理解锂离子电池负极材料的结构。通过分子束外延(MBE)在硅上制备了两种不同类型的定义明确的分级Sn @ SnO2核壳纳米粒子(NP)分散体,该分散体由非晶或多晶SnO2壳组成。 MBE NP的生长也证明了In2O3和Sn掺杂的In2O3(ITO)NP分散体。锂与NP的减少形式共合金并共插入硅衬底中显示出可逆的电荷存储。通过阳极的电化学和结构特征的相关性,我们详细介绍了组成,面积和体积密度之间的联系,以及锂与Sn @ SnO2和相关NP的电化学合金化对其结构的影响,重要的是,它们在阳极上的分散性电极。分散度还决定了共注入硅集电器的程度,后者可充当缓冲剂。使用高度定义的MBE生长作为模型系统的SnO2和相关材料的组成和结构工程,可以详细检查材料分散或纳米结构对活性电极和材料的电化学性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号