首页> 外文期刊>ACS applied materials & interfaces >Root-Cause Failure Analysis of Photocurrent Loss in Polythiophene:Fullerene-Based Inverted Solar Cells
【24h】

Root-Cause Failure Analysis of Photocurrent Loss in Polythiophene:Fullerene-Based Inverted Solar Cells

机译:聚噻吩:基于富勒烯的倒置太阳能电池中光电流损失的根本原因失效分析

获取原文
获取原文并翻译 | 示例
           

摘要

Metal oxide transport layers have played a crucial role in recent progress in organic photovoltaic (OPV) device stability. Here, we measure the stability of inverted and encapsulated polythiophene:fullerene cells with MoO3/Ag/Al composite anode in operational conditions combining solar radiation and 65 degrees C. Performance loss of over 50% in the first 100 h of the aging is dominated by a drop in the short-circuit current (Jsc). We reveal a concurrent loss in reflectance from 85% to 50% above 650 nm, which is below the optical gap of the used photoactive materials, hence, excluding any major degradation in the bulk of this layer. Correlating the responses of aged devices to a series of test structures comprised of ITO/ZnO cathode, MoO3/Ag, and MoO3/Ag/Al anodes and their combinations with the active layer allowed us to identify that the presence of Al causes the reduced reflectance in these devices, independent of the presence of the active layer. Systematic single-stress aging on the test structures further indicates that elevated heat is the cause of the reflectance loss. Cross-section transmission electron microscopy coupled with elemental analysis revealed the unsuspected role of Al; notably, it diffuses through the entire 150 nm thick Ag layer and accumulates at the MoO3/Ag interface. Moreover, XRD analysis of the aged MoO3/Ag/Al anode indicates the formation of Ag2Al alloy. Depth profiling with X-ray photoelectron spectroscopy advanced our understanding by confirming the formation of Ag-Al intermetallic alloy and the presence of oxidized Al only at the MoO3/Ag interface suggesting a concomitant reduction of MoO3 to most probably MoO2. This latter compound is less reflective than MoO3, which can explain the reduced reflectance in aged devices as proven by optical simulations. On the basis of these results, we could estimate that 20% of the loss in Jsc is ascribed to reduction of MoO3 triggered by its direct contact with Al.
机译:金属氧化物传输层在有机光伏(OPV)器件稳定性的最新进展中起着至关重要的作用。在这里,我们在结合太阳辐射和65摄氏度的操作条件下,使用MoO3 / Ag / Al复合阳极测量倒置和封装的聚噻吩:富勒烯电池的稳定性。在老化的前100小时中,性能损失超过50%短路电流(Jsc)下降。我们发现,在650 nm以上,反射率会同时发生损失,从85%降至50%,这低于所用光敏材料的光学间隙,因此,不包括该层整体的任何重大退化。将老化的设备的响应与由ITO / ZnO阴极,MoO3 / Ag和MoO3 / Ag / Al阳极组成的一系列测试结构及其与有源层的组合相关联,使我们能够确定Al的存在会导致反射率降低在这些器件中,与有源层的存在无关。测试结构上的系统性单应力老化进一步表明,热量升高是反射率损失的原因。横截面透射电子显微镜与元素分析相结合,揭示了Al的不可思议的作用。值得注意的是,它扩散到整个150 nm厚的Ag层中,并累积在MoO3 / Ag界面处。此外,对老化的MoO3 / Ag / Al阳极进行X射线衍射分析表明,形成了Ag2Al合金。 X射线光电子能谱深度剖析通过确认Ag-Al金属间合金的形成以及仅在MoO3 / Ag界面处存在氧化的Al的存在,进一步加深了我们的理解,表明MoO3随之还原为最有可能的MoO2。后一种化合物的反射性低于MoO3,这可以解释光学模拟证明的老化设备中反射率的降低。根据这些结果,我们可以估计Jsc中20%的损耗归因于MoO3与Al直接接触而引起的MoO3减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号