首页> 外文期刊>ACS applied materials & interfaces >Layer-by-Layer Evolution of Structure, Strain, and Activity for the Oxygen Evolution Reaction in Graphene-Templated Pt Mono layers
【24h】

Layer-by-Layer Evolution of Structure, Strain, and Activity for the Oxygen Evolution Reaction in Graphene-Templated Pt Mono layers

机译:石墨烯模板化的Pt单层中氧释放反应的结构,应变和活性的逐层演化

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched,graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended Xray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the,Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced,compressive strain) as well as a higher resistance against loss of the catalytically active Pt surface.
机译:在这项研究中,我们探索了在石墨烯/金模板上生长的金属单层的结构驱动表面特性的尺寸方面。在这里,表面受限的氧化还原置换(SLRR)用于提供石墨烯上Pt单层的精确逐层生长。我们发现经过几次SLRR迭代,可以在石墨烯上生长完全润湿的4-5个单层Pt膜。在Pt-Au界面处掺入石墨烯会改变合成Pt单层的生长机理,电荷转移,平衡原子间距离和相关应变。我们发现,单层夹心石墨烯能够在其上生长的Pt吸附层上引起3.5%的压缩应变,结果,由于Pt层的面密度超出了面心,因此催化活性提高了。立方密堆积。同时,夹在中间的石墨烯不会阻碍基底Au和附加层Pt之间的近表面电子交换的邻近效应。 X射线光电子能谱(XPS)和扩展的X射线吸收精细结构(EXAFS)技术用于检查跨Pt-石墨烯-Au结的电荷介导和局部原子排列与Pt附加层尺寸的关系。循环伏安法(CV)和氧还原反应(ORR)作为探针分别检查Pt单层的电化学活性区域和催化剂活性。结果显示,由于石墨烯诱导的压缩应变,插入的石墨烯单层导致Pt的活性增加,并且对催化活性Pt表面的损失具有更高的抵抗力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号