首页> 外文期刊>ACS applied materials & interfaces >Hydroxylation of Organic Polymer Surface: Method and Application
【24h】

Hydroxylation of Organic Polymer Surface: Method and Application

机译:有机聚合物表面的羟基化:方法与应用

获取原文
获取原文并翻译 | 示例
       

摘要

It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C—OH by a simple and mild way. Thanks to the approaches developed recendy, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derealization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C—H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C—H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C—H bonds to C—OSO_3~- and, subsequently, to C—OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl groups preserve their own reactivity toward other complementary compounds, thus creating a novel base with distinct surface properties, Thanks to this functionalized platform, a wide range of organic, inorganic and metal materials have been attached to conventional organic polymer substrates through the rational engineering of surface molecular templates from small functional groups to macromolecules. It is expected that the proposed novel CPO method and its versatile usages in advanced material applications will offer new opportunities for a variety of scientific communities, especially for those working on surface/interface modulation.
机译:很难相信,通过一种简单温和的方法,聚合物材料表面的惰性C-H键可以快速有效地转化为C-OH。由于最近开发的方法,现在有可能通过简单/温和的光化学反应将聚合物基材的表面H原子转化为单层OH基团。本文重点介绍了这种小分子界面化学的方法和应用。材料表面上羟基的存在不仅决定了材料的物理和化学性质,而且还为合成后的顺序修饰提供了有效的反应位点,以满足各种应用的需求。然而,基于石油的有机合成材料,尤其是聚烯烃,主要包含C和H原子,由于低的表面能和反应性惰性,因此存在严重的表面问题。这些局限性使得朝合成后的表面顺序化学脱去氨基甲酸酯化以提高功能性和特性具有挑战性,并且在将聚合物基材与天然或无机材料结合或结合在一起时,还会引起严重的界面问题。因此,基于在聚合物表面上CH键的直接转化的聚合物表面羟基化对于学术和实际工业应用具有重要意义。尽管已经有活跃的研究结果报道了溶液中小分子CH键的活化作用(因此是均相的),但其中大多数以使用多种过渡金属作为催化剂为特征,反应速度慢,原子经济性低且具有明显的优势。环境污染。与这些常规的CH活化策略形成鲜明对比的是,本Spotlight描述了一种通用的受限光催化氧化(CPO)系统,该系统能够将聚合物表面的CH键直接转换为CHOS_3〜,然后再转换为CH。 OH通过简单的水解作用。一般而言,这些新注入的羟基保留了其自身对其他互补化合物的反应性,从而创建了具有独特表面特性的新型碱。得益于此功能化平台,许多有机,无机和金属材料已附着在常规有机聚合物上通过从小功能基团到大分子的表面分子模板的合理工程设计底物。可以预期,所提出的新颖的CPO方法及其在先进材料应用中的广泛使用将为各种科学界,尤其是从事表面/界面调制工作的人们提供新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号