首页> 外文期刊>Journal of Research of the National Institute of Standards and Technology >Phase Uncertainty in Digital Holographic Microscopy Measurements in the Presence of Solution Flow Conditions
【24h】

Phase Uncertainty in Digital Holographic Microscopy Measurements in the Presence of Solution Flow Conditions

机译:在溶液流动条件存在下数字全息显微镜测量的相位不确定性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Digital holographic microscopy (DHM) is a surface topography measurement technique with reported sub-nanometer vertical resolution. Although it has been made commercially available recently, few studies have evaluated the uncertainty or noise in the phase measurement by the DHM. As current research is using the DHM to monitor surface topography changes of dissolving materials under flowing water conditions, it is necessary to evaluate the effect of water and flow rate on the uncertainty in the measurement. Uncertainty in this study was concerned with the temporal standard deviation per pixel of the reconstructed phase. Considering the effects of solution flow rate, magnification, objective lens type (air or immersion), and experimental configuration, measurements under static conditions in air and in water with an immersion lens yielded the smallest amount of uncertainty (mean of <= 0.5 nm up to 40x magnification). Increasing the water flow rate resulted in an increase in mean uncertainty to <= 0.6 nm up to 40x with an immersion lens. Observations of a sample through a glass window at 20x magnification in flowing water also yielded increasing uncertainty, with mean values of <= 0.5 nm, <= 0.8 nm, and <= 1.1 nm for flow rates of 0 mL min(-1), 15 mL min-1, and 33 mL min(-1). Different hologram acquisition rates (12.5 s(-1) and 25 s(-1)) did not significantly impact the uncertainty in the phase. Collecting holograms in single-wavelength versus dual-wavelength modes did impact the uncertainty, with the mean uncertainty at 10x magnification for the same wavelength being <= 0.5 nm from the single-wavelength mode compared to <= 1.5 nm from the dualwavelength mode. When the quantified uncertainty was applied to simulated dissolution data, lower limits of measured dissolution rates were found below which the measured data may not be distinguishable from the uncertainty in the measurement. The limiting surface-normal dissolution velocity is -10(-11.7) m s(-1) for experiments with an immersion lens in flowing water conditions and -10-11.7 m s(-1), -10(-11.4) m s(-1), and -10(-11.0) m s(-1) for static (0 mL min(-1)), slow (<= 15 mL min(-1)), and fast (<== 109 mL min(-1)) flowing water conditions in experiments with a glass window, respectively. The data presented by this study will allow for better experimental design and methodology for future dissolution or precipitation studies using DHM and will provide confidence in the data produced in postprocessing.
机译:数字全息显微镜(DHM)是一种具有报告的子纳米垂直分辨率的表面形貌测量技术。尽管最近已经进行了商业上,但很少有研究已经评估了DHM的相位测量中的不确定性或噪音。由于目前的研究正在使用DHM监测流动水条件下溶解材料的表面形貌变化,有必要评估水和流速对测量中不确定性的影响。本研究的不确定性涉及每个像素的重建阶段的时间标准偏差。考虑到溶液流速,放大率,物镜型(空气或浸渍)和实验配置的影响,在空气中的静态条件下测量和浸入镜片的水中产生的静态条件,产生了最小的不确定性量(平均值<= 0.5nm到40x放大倍数)。增加水流速率导致平均不确定度增加到浸入透镜的平均不确定度至40倍。通过在流水中的20倍倍率下通过玻璃窗的观察结果也产生了增加的不确定性,平均值<= 0.5nm,<= 0.8nm,以及0mL min(-1)的流速的<= 1.1nm, 15mL min-1和33ml min(-1)。不同的全息图采集率(12.5秒(-1)和25秒(-1))没有显着影响阶段的不确定性。在单波长与双波长模式中收集全息图确实影响了不确定性,在10倍放大率下,与来自双波长模式的相同波长为<= 0.5nm的相同波长的平均不确定性与来自双波长模式的<= 1.5nm相比。当对模拟溶出数据应用量化的不确定性时,下面发现测量的溶解速率的下限在下面发现测量数据可能无法与测量中的不确定性区分。限制表面正常溶解速度为-10(-11.7)MS(-1),用于在流动的水条件下的浸渍透镜和-10-11.7ms(-1),-10(-11.4)MS(-1)(-1) )和-10(-11.0)MS(-1)用于静态(0mL min(-1)),慢(<= 15mL min(-1)),快速(<== 109ml min( - 1))分别在用玻璃窗的实验中流动水条件。本研究提出的数据将允许使用DHM的未来溶解或降水研究更好的实验设计和方法,并将提供对后处理中产生的数据的信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号