首页> 外文期刊>Journal of intelligent & fuzzy systems: Applications in Engineering and Technology >Making EEMD more effective in extracting bearing fault features for intelligent bearing fault diagnosis by using blind fault component separation
【24h】

Making EEMD more effective in extracting bearing fault features for intelligent bearing fault diagnosis by using blind fault component separation

机译:通过使用盲故障组件分离使EEMD更有效地提取智能轴承故障诊断的轴承故障特征

获取原文
获取原文并翻译 | 示例
       

摘要

Rolling element bearings are widely used in machinery, such as cooling fan, railway axle, centrifugal pump, transaction motor, gas turbine engine, wind turbine gearbox, etc., to support rotating shafts. Bearing failures will accelerate failures of other adjacent components and finally result in the breakdown of systems. To prevent any unexpected accidents and reduce economic loss, condition monitoring and fault diagnosis of rolling element bearings should be immediately conducted. Ensemble empirical mode decomposition (EEMD) as an improvement on empirical mode decomposition is a data-driven algorithm to adaptively decompose vibration signals collected from the casing of machinery for bearing fault feature extraction without the requirement of expertise and thus its easy usage attracts much attention in recent years from readers and engineers. The direct applications of EEMD to preprocessing bearing fault signals for intelligent bearing fault diagnosis can be found in lots of publications and conferences every year. However, such applications are not always effective in extracting bearing fault features because the Fourier spectrum of the first intrinsic mode function is too wide and contains many unwanted strong low-frequency periodic components. In this paper, according to results from the analyses of industrial railway axle bearing fault signals, we experimentally show that the direct use of EEMD is not always effective in extracting bearing fault features. Further, to make EEMD more effective, we introduce the concept of blind fault component separation to separate low-frequency periodic vibration components from high-frequency random repetitive transients, such as bearing fault signals. Results show that the idea of blind fault component separation is much helpful in enhancing the effectiveness of EEMD in extracting bearing fault features in the case of industrial railway axle bearing fault diagnosis.
机译:滚动元件轴承广泛用于机械,如冷却风扇,铁路轴,离心泵,交易电机,燃气轮机发动机,风力涡轮机齿轮箱等,以支撑旋转轴。轴承故障将加速其他相邻组件的故障,最后导致系统的崩溃。为防止任何意外事故和降低经济损失,应立即进行滚动元件轴承的情况监测和故障诊断。集合经验模式分解(EEMD)作为对经验模式分解的改进,是一种数据驱动算法,可以自适应地分解从机械的壳体收集的振动信号,用于轴承故障特征提取,而无需专业知识,因此其易用的使用引起了很多关注近年来读者和工程师。 EEMD对智能轴承故障诊断的预处理故障信号的直接应用可以在许多出版物和每年发布会中找到。然而,这种应用在提取轴承故障特征方面并不总是有效,因为第一个固有模式功能的傅里叶频谱太宽,并且包含许多不需要的强大的低频周期元件。在本文中,根据工业铁路轴承故障信号的分析结果,我们通过实验表明EEMD的直接使用并不总是有效地提取轴承故障特征。此外,为了使EEMD更有效,我们介绍了盲故障分量分离的概念,从高频随机重复瞬态分离低频周期振动分量,例如轴承故障信号。结果表明,盲故障分量分离的思想在提高EEMD在工业铁路轴承故障诊断的情况下提高EEMD的有效性很大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号