...
首页> 外文期刊>JPC Bulletin on Iron & Steel >Electric-Field Induced Reversible Switching of the Magnetic Easy Axis in Co/BiFeO3 on SrTiO3
【24h】

Electric-Field Induced Reversible Switching of the Magnetic Easy Axis in Co/BiFeO3 on SrTiO3

机译:电场诱导的磁性容易轴在SRTIO 3 上的CO / BIFEO 3 中的磁性容易轴的可逆切换

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electric-field (E-field) control of magnetism enabled by multiferroic materials has the potential to revolutionize the landscape of present memory devices plagued with high energy dissipation. To date, this E-field controlled multiferroic scheme has only been demonstrated at room temperature using BiFeO3 films grown on DyScO3, a unique and expensive substrate, which gives rise to a particular ferroelectric domain pattern in BiFeO3. Here, we demonstrate reversible electric-field-induced switching of the magnetic state of the Co layer in Co/BiFeO3 (BFO) (001) thin film heterostructures fabricated on (001) SrTiO3 (STO) substrates. The angular dependence of the coercivity and the remanent magnetization of the Co layer indicates that its easy axis reversibly switches back and forth 45° between the (100) and the (110) crystallographic directions of STO as a result of alternating application of positive and negative voltage pulses between the patterned top Co electrode layer and the (001) SrRuO3 (SRO) layer on which the ferroelectric BFO is epitaxially grown. The coercivity (HC) of the Co layer exhibits a hysteretic behavior between two states as a function of voltage. A mechanism based on the intrinsic magnetoelectric coupling in multiferroic BFO involving projection of antiferromagnetic G-type domains is used to explain the observation. We have also measured the exact canting angle of the G-type domain in strained BFO films for the first time using neutron diffraction. These results suggest a pathway to integrating BFO-based devices on Si wafers for implementing low power consumption and nonvolatile magnetoelectronic devices.]]>
机译:<![cdata [ src ='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/nefd/2017/nalefd.2017.17.issue-5/acs.nanolett.6b05152/ 20170504 / Images / Medium / NL-2016-051525_0007.gif“>电磁场(E-Field)控制由多体材料使能的磁性控制具有彻底改变现有内存装置的景观,具有高能量耗散。迄今为止,使用Bifeo 3 在Dysco 3 上生长的Bifeo 3 薄膜仅在室温下进行了控制的多体化方案。昂贵的基板,它引起了Bifeo 3 中的特定铁电域图案。在这里,我们证明了在(001)SRTIO 3中制造的CO / BIFEO 3 (001)薄膜异质结构的CO层的磁状态的可逆电场诱导切换(sto)基板。矫顽力的角度依赖性和CO层的剩余磁化指示其易于轴可逆地在(100)和(110)和(110)晶形方向之间来回切换STO的正面和负的正面和负的结果图案化顶部Co电极层和(001)Srruo <亚> 3 /亚>(SRO)层之间的电压脉冲在其上外延生长的铁电BFO。 Co层的矫顽力(H <亚> C )在两个状态之间表现出滞后行为,作为电压的函数。基于涉及反铁磁性G型结构域的突起的多体型BFO中基于固有磁电联轴的机理用于解释观察。我们还使用中子衍射首次测量应变BFO膜中的G型结构域的精确倾倒角度。这些结果表明了一种在Si晶片上集成了基于B​​FO的装置的途径,用于实现低功耗和非易失性磁电装置。]>

著录项

  • 来源
    《JPC Bulletin on Iron & Steel》 |2017年第5期|共8页
  • 作者单位

    Department of Materials Science and Engineering University of Maryland College Park Maryland 20742 United States;

    Department of Materials Science and Engineering University of Maryland College Park Maryland 20742 United States;

    Material Measurement Laboratory NIST Center for Neutron Research Center for Nanoscale Science and Technology National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Department of Materials Science and Engineering University of Maryland College Park Maryland 20742 United States;

    Department of Materials Science and Engineering University of Maryland College Park Maryland 20742 United States;

    Portland Technology Development Intel Corporation Hillsboro Oregon 97124 United States;

    Canadian Neutron Beam Centre National Research Council Chalk River Laboratories Chalk River Ontario Canada K0J 1J0;

    Material Measurement Laboratory NIST Center for Neutron Research Center for Nanoscale Science and Technology National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Material Measurement Laboratory NIST Center for Neutron Research Center for Nanoscale Science and Technology National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Material Measurement Laboratory NIST Center for Neutron Research Center for Nanoscale Science and Technology National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Material Measurement Laboratory NIST Center for Neutron Research Center for Nanoscale Science and Technology National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Material Measurement Laboratory NIST Center for Neutron Research Center for Nanoscale Science and Technology National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Material Measurement Laboratory NIST Center for Neutron Research Center for Nanoscale Science and Technology National Institute of Standards and Technology Gaithersburg Maryland 20899 United States;

    Department of Materials Science and Engineering University of California Berkeley California 94720 United States;

    Department of Materials Science and Engineering University of Maryland College Park Maryland 20742 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 钢铁冶炼(黑色金属冶炼)(总论);
  • 关键词

    electric-field controlled magnetism; exchange coupling; ferroelectric domain; magnetoelectronic device; Multiferroic BiFeOlt; subgt; 3lt; /subgt; neutron diffraction;

    机译:电场控制磁化;交换耦合;铁电畴;磁体器件;多元的BIFEO&lt;亚&gt;3&lt;/ sub&gt;中子衍射;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号