首页> 外文期刊>Journal of Theoretical Biology >Evolutionary design of regulatory control. II. Robust error-correcting feedback increases genetic and phenotypic variability
【24h】

Evolutionary design of regulatory control. II. Robust error-correcting feedback increases genetic and phenotypic variability

机译:监管控制的进化设计。 II。 强大的纠错反馈会增加遗传和表型变异性

获取原文
获取原文并翻译 | 示例
           

摘要

As systems become more robust against perturbations, they can compensate for greater sloppiness in the performance of their components. That robust compensation reduces the force of natural selection on the system's components, leading to component decay, The paradoxical coupling of robustness and decay predicts that robust systems evolve cheaper, lower performing components, which accumulate greater mutational genetic variability and which have greater phenotypic stochasticity in trait expression. Previous work noted the paradox of robustness. However, no general theory for the evolutionary dynamics of system robustness and component decay has been developed. This article takes a first step by linking engineering control theory with the genetic theory of evolutionary dynamics. Control theory emphasizes error-correcting feedback as the single greatest principle in robust system design. Linking control theory to evolution leads to a theory for the evolutionary dynamics of error-correcting feedback, a unifying approach for the evolutionary analysis of robust systems. This article shows how increasingly robust systems accumulate more genetic variability and greater stochasticity of expression in their components. The theory predicts different levels of variability between different regulatory control architectures and different levels of variability between different components within a particular regulatory control system. The theory also shows that increasing robustness reduces the frequency of system failures associated with disease and, simultaneously, causes a strong increase in the heritability of disease. Thus, robust error correction in biological regulatory control may partly explain the puzzlingly high heritability of disease and, more generally, the surprisingly high heritability of fitness. (C) 2019 Elsevier Ltd. All rights reserved.
机译:随着系统对扰动变得更加强大,它们可以弥补它们组件性能的更大的邋..这种稳健的补偿减少了系统组件上的自然选择的力,导致组件衰减,鲁棒性和衰减的矛盾耦合预测,鲁棒系统的发展更便宜,更低的性能,积累了更大的突变遗传变异性,并且具有更大的表型随机性易变性特质表达。以前的工作注意到了鲁棒性的悖论。然而,已经开发出系统鲁棒性和组分衰变的进化动态的一般理论。本文通过将工程控制理论与进化动态的遗传理论联系起来,采取第一步。控制理论强调错误校正的反馈作为强大的系统设计中的最大原则。将控制理论与进化的连接导致纠错反馈的进化动态理论,鲁棒系统进化分析的统一方法。本文展示了越来越稳健的系统如何在其组件中积累更多的遗传变异和更大的表达随机性。该理论在特定监管控制系统内不同的调节控制架构和不同部件之间的不同变异性之间的不同程度的变异程度。该理论还表明,增加的稳健性降低了与疾病相关的系统失败的频率,同时导致疾病的遗传性强烈增加。因此,生物调节控制中的鲁棒纠错可能部分解释疾病的令人难以遗传的遗传性,并且更普遍地,令人惊讶的高遗传性。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号