...
首页> 外文期刊>Journal of Theoretical Biology >Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability
【24h】

Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability

机译:探讨终结蛋白质和微管靶向化疗药物对微管动态不稳定性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Highlights ? We describe a new model for microtubule (MT) dynamic instability. ? We develop novel mathematical descriptions for time- and distance-based MT catastrophe frequency. ? We describe how end-binding proteins (EBs) alter MT dynamics (in terms of the catastrophe frequencies). ? We provide an example for how EBs work synergistically with EBs to promote MT dynamic instability. Abstract Microtubules (MTs) play a key role in normal cell development and are a primary target for many cancer chemotherapy MT targeting agents (MTAs). As such, understanding MT dynamics in the presence of such agents, as well as other proteins that alter MT dynamics, is extremely important. In general, MTs grow relatively slowly and shorten very fast (almost instantaneously), an event referred to as a catastrophe. These dynamics, referred to as dynamic instability , have been studied in both experimental and theoretical settings. In the presence of MTAs, it is well known that such agents work by suppressing MT dynamics, either by promoting MT polymerization or promoting MT depolymerization. However, recent in vitro experiments show that in the presence of end-binding proteins (EBs), low doses of MTAs can increase MT dynamic instability, rather than suppress it. Here, we develop a novel mathematical model, to describe MT and EB dynamics, something which has not been done in a theoretical setting. Our MT model is based on previous modeling efforts, and consists of a pair of partial differential equations to describe length distributions for growing and shortening MT populations, and an ordinary differential equation (ODE) system to describe the time evolution for concentrations of GTP- and GDP-bound tubulin. A new extension of our approach is the use of an integral term, rather than an advection term, to describe very fast MT shortening events. Further, we introduce an ODE system to describe the binding and unbinding of EBs with MTs. To compare simulation results with experiment, we define novel mathematical expressions for time- and distance-based catastrophe frequencies. These quantities help to define MT dynamics in in vivo and in vitro settings. Simulation results show that increasing concentrations of EBs work to increase time-based catastrophe while distance-based catastrophe is less affected by changes in EB concentration, a result that is consistent with experiment. We further describe how EBs and MTAs alter MT dynamics. In the context of this modeling framework, we show that it is likely that MTAs and EBs do not work independently from one another. Thus, we propose a mechanism for how EBs can work synergistically with MTAs to promote MT dynamic instability at low MTA dose. ]]>
机译:强调 ?我们描述了一种用于微管(MT)动态不稳定性的新模型。还我们开发了基于时间和距离的MT灾难频率的新颖数学描述。还我们描述了最终结合蛋白(EBS)改变MT动态(根据灾难频率而言)。还我们提供EBS如何使用EBS协同工作以推广MT动态不稳定的示例。摘要微管(MTS)在正常细胞开发中发挥关键作用,是许多癌症化疗MT靶向剂(MTA)的主要目标。因此,在存在这些药物存在下了解MT动态,以及改变MT动态的其他蛋白质非常重要。通常,MTS相对缓慢地生长并且非常快速地缩短(几乎瞬间),该事件称为灾难。已经在实验和理论设置中研究了称为动态不稳定的这些动态。在MTA的存在下,众所周知,通过促进Mt聚合或促进Mt脱聚,可以通过抑制MT动态来加工这些试剂。然而,最近的体外实验表明,在结束结合蛋白(EBS)的存在下,低剂量的MTA可以增加MT动态不稳定性,而不是抑制它。在这里,我们开发一种新颖的数学模型,来描述MT和EB动态,这些模型尚未在理论上进行。我们的MT模型基于以前的建模工作,并且由一对部分微分方程组成,以描述用于生长和缩短MT群体的长度分布,以及普通微分方程(ODE)系统,以描述GTP浓度的时间进化GDP结合的小管蛋白。我们的方法的新延长是使用一个组成的术语,而不是平流术语来描述非常快的MT缩短事件。此外,我们介绍了ode系统,以描述与MTS的EB的结合和解除。为了使用实验比较模拟结果,我们为基于时间和距离的灾难频率定义了新的数学表达式。这些数量有助于在体内和体外设置中定义MT动态。仿真结果表明,随着EB集中变化的影响,增加基于时间的EBS的EBS浓度的兴起增加,而距离的灾难性较小,其结果是与实验一致的结果。我们进一步描述了EBS和MTA如何改变MT动态。在此建模框架的上下文中,我们表明MTA和EBS可能无法彼此独立工作。因此,我们提出了一种机制,EBS如何与MTA协同协同工作以在低MTA剂量下促进MT动态稳定性。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号