首页> 外文期刊>Journal of the Optical Society of America, A. Optics, image science, and vision >Performance of underwater quantum key distribution with polarization encoding
【24h】

Performance of underwater quantum key distribution with polarization encoding

机译:偏振编码的水下量子密钥分布的性能

获取原文
获取原文并翻译 | 示例
           

摘要

Underwater quantum key distribution (QKD) has potential applications in absolutely secure underwater communication. However, the performance of underwater QKD is limited by the optical elements, background light, and dark counts of the detector. In this paper, we propose a modified formula for the quantum bit error rate (QBER), which takes into account the effect of detector efficiency on the QBER caused by the background light. Then we calculate the QBER of the polarization encoding BB84 protocol in Jerlov-type seawater by analyzing the effect of the background light and optical components in a more realistic situation. Finally, we further analyze the final key rate and the maximum secure communication distance in three propagation modes, i.e., upward, downward, and horizontal modes. We find that secure QKD can be performed in the clearest Jerlov-type seawater at a distance of hundreds of meters, even in the worst downward propagation mode. Specifically, by optimizing the system parameters, it is possible to securely transmit information with a rate of 67 kbits/s at a distance of 100 m in the seawater channel with an attenuation coefficient of 0.03/m at night. For practical underwater QKD, the performance can also be improved by using decoy states. Our results are useful for long-distance underwater quantum communication. (c) 2019 Optical Society of America.
机译:水下量子密钥分布(QKD)具有绝对安全的水下通信的潜在应用。然而,水下QKD的性能受到光学元件,背景光和探测器的暗计数的限制。在本文中,我们提出了一种用于量子钻头错误率(QBET)的修改公式,这考虑了背景灯引起的QGET上检测器效率的影响。然后,我们通过分析背景光和光学组件在更现实的情况下的效果来计算Jerlov型海水中BB84协议的极化QB84协议的QGER。最后,我们进一步分析了三种传播模式的最终键率和最大安全通信距离,即向上,向下和水平模式。我们发现安全QKD可以在最清晰的jerlov型海水中执行数百米的距离,即使在最糟糕的向下传播模式下也是如此。具体地,通过优化系统参数,可以在海水信道中在100米处的距离在海水通道中达到67 kbits / s的速率来牢固地传输信息,其夜间衰减系数为0.03 / m。对于实际水下QKD,使用诱饵状态也可以提高性能。我们的结果对于长途水下量子通信有用。 (c)2019年光学学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号