首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Multiscale designs of the chitinous nanocomposite of beetle horn towards an enhanced biomechanical functionality
【24h】

Multiscale designs of the chitinous nanocomposite of beetle horn towards an enhanced biomechanical functionality

机译:甲虫喇叭近核复合物的多尺度设计朝向增强的生物力学功能

获取原文
获取原文并翻译 | 示例
           

摘要

Operating mainly as a type of weapon, the beetle horn develops an impressive mechanical efficiency based on chitinous materials to maximize the injury to opponent and simultaneously minimize the damage to itself and underlying brain under stringent loading conditions. Here the cephalic horn of the beetle Allomyrina dichotoma is probed using multiscale characterization combined with finite element simulations to explore the origins of its biomechanical functionality from the perspective of materials science. The horn is revealed to be highly regulated from the macroscopic shape, geometry, and connection with the body to the meso- and microscopic architecture, moisture content, and chemical and structural characteristics. Varying kinds of gradients are integrated at all length-scales. Such designs are demonstrated to benefit the mechanical performance by mitigating stress concentrations, retarding crack propagation, and modulating local properties to better adapt to stress. Enhanced rigidity, robustness and stability are additionally generated from the constrained flexibility endowed by the nanocomposite plywood structure through the reorientation of chitin nanofibrils within the proteinaceous matrix. These findings shed light on the intriguing materials-design strategies of nature in creating synergy of offence and persistence. They may even offer inspiration for the synthesis of high-performance materials and structures, in particular beams to resist bending and torsion.
机译:主要作为一种武器操作,甲壳虫喇叭基于胆小的材料造成令人印象深刻的机械效率,以最大化对手的伤害,并在严格的装载条件下同时最大限度地减少对自身的损害和潜在的大脑。在这里,使用多尺度表征探测甲虫甲基甲基二氏二均米肌的头骨喇叭与有限元模拟相结合,从材料科学的角度探讨其生物力学功能的起源。喇叭被揭示为与宏观形状,几何形状和与体内与中间和微观架构,水分含量和化学和结构特征的连接的高度调节。不同种类的梯度都集成在所有长度范围内。证明这种设计以通过减轻应力浓度,延迟裂纹繁殖和调节局部特性来利用机械性能,以更好地适应应力。通过在蛋白质基质内的丁蛋白纳米纤维的重新定向,从受纳米复合胶合板结构赋予的受约束的柔韧性等于增强的刚性,鲁棒性和稳定性。这些调查结果阐明了利用自然的有趣材料设计策略,从而创造了进攻和持久性的协同作用。它们甚至可以为合成高性能材料和结构,特别是抗弯曲和扭转来提供灵感。

著录项

  • 来源
  • 作者单位

    Lanzhou Univ Technol State Key Lab Adv Nonferrous Mat Lanzhou 730050 Gansu Peoples R China;

    Chinese Acad Sci Inst Met Res Mat Fatigue &

    Fracture Div Shenyang 110016 Liaoning Peoples R;

    Chinese Acad Sci Inst Met Res Mat Fatigue &

    Fracture Div Shenyang 110016 Liaoning Peoples R;

    Chinese Acad Sci Inst Met Res Mat Fatigue &

    Fracture Div Shenyang 110016 Liaoning Peoples R;

    Chinese Acad Sci Inst Met Res Mat Fatigue &

    Fracture Div Shenyang 110016 Liaoning Peoples R;

    Chinese Acad Sci Inst Met Res Mat Fatigue &

    Fracture Div Shenyang 110016 Liaoning Peoples R;

    Chinese Acad Sci Inst Met Res Mat Fatigue &

    Fracture Div Shenyang 110016 Liaoning Peoples R;

    Lanzhou Univ Technol State Key Lab Adv Nonferrous Mat Lanzhou 730050 Gansu Peoples R China;

    Chinese Acad Sci Inst Met Res Mat Fatigue &

    Fracture Div Shenyang 110016 Liaoning Peoples R;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 普通生物学;
  • 关键词

    Biomechanics; Gradient; Structural hierarchy; Nanocomposite; Plywood structure;

    机译:生物力学;梯度;结构层次;纳米复合材料;胶合板结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号