...
首页> 外文期刊>Biotechnology and Bioengineering >Biofilm Growth: A Multi-Scale and Coupled Fluid-Structure Interaction and Mass Transport Approach
【24h】

Biofilm Growth: A Multi-Scale and Coupled Fluid-Structure Interaction and Mass Transport Approach

机译:生物膜生长:多尺度和耦合的流固耦合和传质方法。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel approach for modelling biofilm growth. It is based on a finite element method and includes both fluid-structure interaction (FSI) as well as scalar transport effects. Due to the different timescales of the involved phenomena, the growth of the biofilm structure is coupled with the FSI and mass transport through a multi-scale approach in time. In each hydrodynamic time step, first the non-linear FSI problem is solved followed by the scalar transport equations, using the information on velocities and deformations obtained in the FSI step. After a steady state solution is reached, information on mass fluxes and stresses are passed to the growth model. At this point, the growth is calculated for a biological time step larger than the hydrodynamic one and based on the mass flux through the interface and on normal and shear stresses on it. This type of approach can significantly contribute to the understanding of biofilm development in fluid flows, since the influence of hydrodynamic conditions and availability of nutrients is well known to have effects on biofilm development. Therefore, for the purpose of understanding biofilm macro-scale dynamics, it is essential to adopt a modeling approach, which takes into account all the relevant aspects, like fluid flow, structure deformation, mass transport and their effect on biofilm growth and erosion. First numerical examples demonstrate the suitability of the proposed model to catch the main features of a growing biofilm structure.
机译:在本文中,我们提出了一种新型的生物膜生长建模方法。它基于有限元方法,包括流固耦合(FSI)和标量传输效应。由于所涉及现象的时间尺度不同,生物膜结构的增长与FSI和质量传输通过及时的多尺度方法相结合。在每个流体动力学时间步骤中,首先使用在FSI步骤中获得的速度和变形信息,解决非线性FSI问题,然后解决标量传输方程。达到稳态解后,有关质量通量和应力的信息将传递到生长模型。在这一点上,根据比水动力大的生物时间步长,并根据通过界面的质量通量以及界面上的法向应力和剪切应力来计算生长。这种类型的方法可以极大地有助于理解流体中生物膜的发育,因为众所周知,流体动力学条件和养分的利用率会对生物膜的发育产生影响。因此,为了理解生物膜宏观动力学的目的,必须采用一种建模方法,该方法要考虑所有相关方面,例如流体流动,结构变形,质量迁移及其对生物膜生长和侵蚀的影响。第一个数值示例证明了所提出的模型能够适应不断增长的生物膜结构的主要特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号