...
首页> 外文期刊>Chemical geology >Coupled interactions between metals and bacterial biofilms in porous media: Implications for biofilm stability, fluid flow and metal transport
【24h】

Coupled interactions between metals and bacterial biofilms in porous media: Implications for biofilm stability, fluid flow and metal transport

机译:金属与多孔介质中细菌生物膜之间的耦合相互作用:对生物膜稳定性,流体流动和金属运输的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to predict the impact of metal-microbe interactions on biofilm stability, hydrodynamics and contaminant transport is a key goal in hydrogeology, membrane bioreactors and geomicrobiology. Yet, we have not been able to find experimental studies reporting the coupling of these three elements in a systematic way. In this study sand column experiments were carried out to investigate the coupled effects of aqueous zinc (Zn~(2+)) on biofilm stability and of biofilm on Zn~(2+) transport in saturated sand columns. A series of aqueous Zn concentrations ranging from 0 to 100ppm were pumped through biofilm-colonised columns and a set of related parameters (hydraulic conductivity, cell numbers, EPS, metal breakthrough curve and metal distribution) was measured. Our results show that biofilm formation prior to introduction of Zn resulted in a significant decrease of hydraulic conductivities. After 10days of metal exposure, Zn showed concentration-dependent toxicity on bacterial cells in the biofilm. However different Zn concentrations produced distinct non-linear effects on EPS production, which resulted in either recovery or further decrease of hydraulic conductivity in the porous matrix. This non-linear response of biofilm to metal concentration could lead to different metal transport patterns in the long term. The concentration of metal contaminants plays a critical role in regulating the effect of metal-biofilm interaction. Our phenomenological study establishes linkages between chemical, microbial and physical processes of metal-biofilm interaction, and is an essential precursor to the development of models for this complex system. Specifically, these interactions are shown to be unpredictable, suggesting that more work needs to be done to constrain flow and transport parameters in biofilm-colonised porous media.
机译:预测金属微生物相互作用对生物膜稳定性,流体动力学和污染物迁移的影响的能力是水文地质学,膜生物反应器和地球微生物学的关键目标。但是,我们还无法找到系统地报告这三个要素耦合的实验研究。在这项研究中,进行了砂柱实验,研究了含水锌(Zn〜(2+))对生物膜稳定性的影响以及生物膜对Zn〜(2+)在饱和砂柱中的迁移的耦合作用。一系列浓度为0至100ppm的含水Zn被泵送通过生物膜固定柱,并测量了一组相关参数(水导率,细胞数,EPS,金属穿透曲线和金属分布)。我们的结果表明,在引入Zn之前形成生物膜会导致水力传导率显着下降。金属接触10天后,锌对生物膜中细菌细胞的浓度依赖性毒性。然而,不同的锌浓度对EPS产生明显的非线性影响,导致多孔基质中水力传导率恢复或进一步降低。从长远来看,生物膜对金属浓度的非线性响应可能导致不同的金属传输方式。金属污染物的浓度在调节金属生物膜相互作用的作用中起着关键作用。我们的现象学研究建立了金属-生物膜相互作用的化学,微生物和物理过程之间的联系,并且是开发此复杂系统模型的重要先驱。具体而言,这些相互作用被证明是不可预测的,这表明需要做更多的工作来约束生物膜定殖的多孔介质中的流量和传输参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号