...
首页> 外文期刊>Journal of Photochemistry and Photobiology, A. Chemistry >Excited-state proton transfer induced [4+2] and [4+4] photocycloaddition reactions of an oxazoline: Mechanism and selectivity
【24h】

Excited-state proton transfer induced [4+2] and [4+4] photocycloaddition reactions of an oxazoline: Mechanism and selectivity

机译:兴奋状态质子转移诱导氧氮杂物的[4 + 2]和[4 + 4]光环载入反应:机制和选择性

获取原文
获取原文并翻译 | 示例
           

摘要

[4+4] and [4+2] photocycloadditions have not computationally attracted the same level of attention as [2 + 2] photocycloadditions. Herein we have employed density-functional theory (DFT), complete active space self-consistent field (CASSCF), and its multi-state second-order perturbation theory (MS-CA.SPT2) methods to systematically explore excited-state intramolecular proton transfer (ESIPT) induced [4+4] and [4+2] photocycloaddition mechanisms of an oxazoline. On the basis of the results, we have found that the ESIPTs in the S-1 state are not as efficient as those in the T-1 state concerning experimentally used irradiation wavelength. Instead, the T-1 ESIPTs generate two sets of endo and exo precursors of [4+4] and [4+2] photocycloadditions. In these reactions, the C atom of the furan group and the N atom of the aminophenyl group are first bonded leading to a diradical intermediate. This reaction step has a small barrier and is thermodynamically favorable. However, the remaining C-C bond formation is blocked in the T-1 state due to its huge reaction barrier. Therefore, the system hops to the So state via T-1 - S-0 intersystem crossings at T-1/S-0 crossing points. These nonadiabatic processes are efficient because of structural and energetic similarities of T-1/S-0 crossing points with their nearby T-1 intermediates. In the So state, the C C bond formation becomes a barrierless process. Finally, we have discussed possible origins for high regioselectivity and enantioselectivity of these photocycloaddition reactions. (C) 2017 Elsevier B.V. All rights reserved.
机译:[4 + 4]和[4 + 2]光电载入没有计算地吸引了与[2 + 2]光电载入的相同程度的注意力。在这里,我们采用了密度 - 功能理论(DFT),完整的主动空间自洽场(CASSCF)及其多状态二阶扰动理论(MS-CA.SPT2)方法,以系统地探索兴奋状态分子内质子转移(ESIPT)诱导恶唑啉的[4 + 4]和[4 + 2]光电载入机制。在结果的基础上,我们发现S-1状态中的eSipts并不像关于实验使用的照射波长的T-1状态那样有效。相反,T-1 eSipts产生两组[4 + 4]和[4 + 2]光电载入的两组内部和外部前体。在这些反应中,首先将呋喃基团的C原子和氨基苯基的N原子键合,导致Diradical中间体。该反应步骤具有小屏障并且具有热力学上有利。然而,由于其巨大的反应屏障,剩余的C-C键形成在T-1状态下被阻断。因此,系统通过T-1 - &gt跳至所以状态。在T-1 / S-0交叉点处的S-0基于系统交叉点。这些非抗病方法是有效的,因为T-1 / S-0交叉点的结构和能量相似性,其附近的T-1中间体。在这种状态下,C C键形成成为障碍过程。最后,我们讨论了这些光电载入反应的高区域选择性和对映选择性的可能起源。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号